Loading…

Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment

We investigate the sources, prevalence, and fine-particle inorganic composition of biosmoke over the western Pacific Ocean between 24 February and 10 April 2001. The analysis is based on highly time-resolved airborne measurements of gaseous and fine- particle inorganic chemical composition made duri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research 2003-11, Vol.108 (D21), p.8816-n/a
Main Authors: Ma, Y., Weber, R. J., Lee, Y.-N., Orsini, D. A., Maxwell-Meier, K., Thornton, D. C., Bandy, A. R., Clarke, A. D., Blake, D. R., Sachse, G. W., Fuelberg, H. E., Kiley, C. M., Woo, J.-H., Streets, D. G., Carmichael, G. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the sources, prevalence, and fine-particle inorganic composition of biosmoke over the western Pacific Ocean between 24 February and 10 April 2001. The analysis is based on highly time-resolved airborne measurements of gaseous and fine- particle inorganic chemical composition made during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment. At latitudes below approximately 25 deg. N, relatively pure biomass burning plumes of enhanced fine-particle potassium, nitrate, ammonium, light-absorbing aerosols, and CO concentrations were observed in plumes that back trajectories and satellite fire map data suggest originated from biomass burning in southeast Asia. Fine-particle water-soluble potassium (K+) is confirmed to be a unique biosmoke tracer, and its prevalence throughout the experiment indicates that approximately 20% of the TRACE-P Asian outflow plumes were influenced, to some extent, by biomass or biofuel burning emissions. At latitudes above 25 deg. N, highly mixed urban/industrial and biosmoke plumes, indicated by SO(sup 2, sub 4) and K+, were observed in 5 out of 53 plumes. Most plumes were found in the Yellow Sea and generally were associated with much higher fine-particle loadings than plumes lacking a biosmoke influence. The air mass back trajectories of these mixed plumes generally pass through the latitude range of between 34 deg. and 40 deg. N on the eastern China coast, a region that includes the large urban centers of Beijing and Tianjin. A lack of biomass burning emissions based on fire maps and high correlations between K+ and pollution tracers (e.g., S(sup 2, sub 4) suggest biofuel sources. Ratios of fine-particle potassium to sulfate are used to provide an estimate of relative contributions of biosmoke emissions to the mixed Asian plumes. The ratio is highly correlated with fine-particle volume (r(sup 2) = 0.85) and predicts that for the most polluted plume encounter in TRACE-P, approximately 60% of the plume is associated with biosmoke emissions. On average, biosmoke contributes approximately 35-40% to the measured fine inorganic aerosol mass in the mixed TRACE-P plumes intercepted north of 25% latitude.
ISSN:0148-0227
2156-2202
DOI:10.1029/2002JD003128