Loading…

Nitrogen Release from Slow-Release Fertilizers in Soils with Different Microbial Activities

Soil microbial activity is recognized as an important factor affecting nitrogen (N) release from slow-release fertilizers. However, studies on the effect of size and activity of soil microflora on fertilizer degradation have provided contrasting results. To date, no clear relationships exist between...

Full description

Saved in:
Bibliographic Details
Published in:Pedosphere 2018-04, Vol.28 (2), p.332-340
Main Authors: NARDI, Pierfrancesco, NERI, Ulderico, DI MATTEO, Giovanni, TRINCHERA, Alessandra, NAPOLI, Rosario, FARINA, Roberta, SUBBARAO, Guntur V., BENEDETTI, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soil microbial activity is recognized as an important factor affecting nitrogen (N) release from slow-release fertilizers. However, studies on the effect of size and activity of soil microflora on fertilizer degradation have provided contrasting results. To date, no clear relationships exist between soil microbial activity and the release of N from slow-release fertilizers. Hence, the aim of this study was to better understand such relationships by determining the release of N from three slow-release fertilizers in soils with different microbial activities. Soils were amended with urea-formaldehyde (UF), isobutylidene diurea (IBDU), and crotonylidene diurea (CDU). Urea, a soluble fertilizer, was used as the control. Fertilized soil samples were placed in a leaching system, and the release of N was determined by measuring ammonium-N and nitrate-N concentrations in leachates during 90 d of incubation. Non-linear regression was used to fit N leaching rate to a first-order model. In all the treated soils, N was released in the order: urea (89%–100%) > IBDU (59%–94%) > UF (46%–73%) > CDU (44%–56%). At the end of incubation, N released from CDU did not differ (P > 0.05) among soils. On the contrary, UF and IBDU released significantly lower (P < 0.05) amounts of N in the soil with higher microbial activity and lower pH. The rate constant (K0) for UF was lower (P < 0.05) in the soil with lower pH. Taken together, our results indicated that soil microbial size and microbial activity had a marginal effect on fertilizer mineralization.
ISSN:1002-0160
2210-5107
DOI:10.1016/S1002-0160(17)60429-6