Loading…

Speciation of organic phosphorus in a sediment profile of Lake Taihu I: Chemical forms and their transformation

Organic phosphorus (nonreactive E NRP) is a major component of P in sediments, but information about its chemical forms and dynamic transformation is limited. The chemical forms and dynamic behaviors of NRP in a sediment profile from Lake Talhu, a freshwater and eutrophic lake in China, were investi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental sciences (China) 2013-04, Vol.25 (4), p.637-644
Main Authors: Xu, Di, Ding, Shiming, Li, Bin, Bai, Xiuling, Fan, Chengxin, Zhang, Chaosheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Organic phosphorus (nonreactive E NRP) is a major component of P in sediments, but information about its chemical forms and dynamic transformation is limited. The chemical forms and dynamic behaviors of NRP in a sediment profile from Lake Talhu, a freshwater and eutrophic lake in China, were investigated. Five forms of NRP in the sediments were extracted based on a chemical fractionation technique, including easily labile NRP (NaHCO3-NRP), reactive metal oxide-bound NRP (HCl-NRP), humic acid-associated NRP (NaOH-NRPnA), fulvic acid-associated NRP (NaOH-NRPFA) and residual NRP (Res-TP). There were notable transformations with increasing sediment depth from the labile NaHCOa-NRP and NaOH-NRP pools to the recalcitrant HCl-NRP and Res-TP pools, which caused the NRP to become increasingly recalcitrant as the early diagenetic processes proceeded. Further analyses showed that the relative changes in contents of organic matter and reactive Fe oxides in the sediment profile triggered a competition for binding NRP fractions and led to the transformation of NRP. The results highlighted the importance of abiotic processes in regulating the diagenesis of organic P and its stability in sediments.
ISSN:1001-0742
1878-7320
DOI:10.1016/S1001-0742(12)60136-3