Loading…

Body Waves Revealed by Spatial Stacking on Long-Term Cross-Correlation of Ambient Noise

Theoretical and experimental studies indicate that complete Green's Function can be retrieved from cross-correlation in a diffuse field. High SNR(signal-to-noise ratio) surface waves have been extracted from cross-correlations of long-duration ambient noise across the globe. Body waves, not extracte...

Full description

Saved in:
Bibliographic Details
Published in:Journal of earth science (Wuhan, China) China), 2014-12, Vol.25 (6), p.977-984
Main Authors: Wang, Kai, Luo, Yinhe, Zhao, Kaifeng, Zhang, Limeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Theoretical and experimental studies indicate that complete Green's Function can be retrieved from cross-correlation in a diffuse field. High SNR(signal-to-noise ratio) surface waves have been extracted from cross-correlations of long-duration ambient noise across the globe. Body waves, not extracted in most of ambient noise studies, are thought to be more difficult to retrieve from regular ambient noise data processing. By stacking cross-correlations of ambient noise in 50 km inter-station distance bins in China, western United States and Europe, we observed coherent 20–100 s core phases(Sc S, PKIKPPKIKP, PcP PKPPKP) and crustal-mantle phases(Pn, P, PL, Sn, S, SPL, SnS n, SS, SSPL) at distances ranging from 0 to 4000 km. Our results show that these crustal-mantle phases show diverse characteristics due to different substructure and sources of body waves beneath different regions while the core phases are relatively robust and can be retrieved as long as stations are available. Further analysis indicates that the SNR of these body-wave phases depends on a compromise between stacking fold in spatial domain and the coherence of pre-stacked cross-correlations. Spatially stacked cross-correlations of seismic noise can provide new virtual seismograms for paths that complement earthquake data and that contain valuable information on the structure of the Earth. The extracted crustal-mantle phases can be used to study lithospheric heterogeneities and the robust core phases are significantly useful to study the deep structure of the Earth, such as detecting fine heterogeneities of the core-mantle boundary and constraining differential rotation of the inner core.
ISSN:1674-487X
1867-111X
DOI:10.1007/s12583-014-0495-6