Loading…

Titanium effect on the microstructure and properties of laminated high boron steel plates

High-boron steel is an important material used for thermal neutron shielding. The appropriate amount of added boron must be de- termined because excessive boron may deteriorate the steel's workability. A uniform microstructure can be formed by adding titanium to boron steel. In this study, casting a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of minerals, metallurgy and materials metallurgy and materials, 2015-05, Vol.22 (5), p.492-499
Main Authors: Yuan, Lin-lin, Han, Jing-tao, Liu, Jing, Wei, Dong-bin, Abathun, Mehari Zelalem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-boron steel is an important material used for thermal neutron shielding. The appropriate amount of added boron must be de- termined because excessive boron may deteriorate the steel's workability. A uniform microstructure can be formed by adding titanium to boron steel. In this study, casting and hot rolling were used to fabricate laminated high-boron steel plates whose cores contained 2.25wt% boron and 0wt%-7.9wt% titanium. The effects of titanium content and hot-rolling and heat-treatment processes on the microstructure and properties of the laminated plates were studied. The results indicated that the optimum titanium content was 5.7wt% when the boron content was 2.25wt%, and that the best overall properties were obtained after heat treatment at 1100℃ for 4 h. The tensile strength, yield strength, and elongation at the specified temperature and holding time were as high as 526.88 MPa, 219.36 MPa, and 29%, respectively.
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-015-1098-7