Loading…

On anomalous transport of multi-species plasma associated with the resistive ballooning and resistive drift waves driven turbulence

Anomalous transport of multi-species plasma related to the resistive ballooning and resistive drift wave turbulence is considered in a “cold” ion approximation. It is found that similar to the resistive drift wave turbulence [see A. R. Knyazev and S. I. Krasheninnikov, Phys. Plasmas 31, 012502 (2024...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2024-05, Vol.31 (5)
Main Author: Krasheninnikov, S. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anomalous transport of multi-species plasma related to the resistive ballooning and resistive drift wave turbulence is considered in a “cold” ion approximation. It is found that similar to the resistive drift wave turbulence [see A. R. Knyazev and S. I. Krasheninnikov, Phys. Plasmas 31, 012502 (2024); and S. I. Krasheninnikov and R. D. Smirnov, Phys. Plasmas (to be published)] the addition of the ballooning drive does not change the main features of anomalous transport of the multi-species plasma: (i) The transport of all ion species is described as a transport of the passive scalars in the turbulent field of the electrostatic potential and electron density perturbation; (ii) the density of ion species with a larger ratio of the mass to charge has the tendency to the accumulation/depletion in the vortices of plasma flow; and (iii) the cross-field transport of all plasma species (including electrons and ions) is described by the same anomalous transport coefficient.
ISSN:1070-664X
1089-7674
DOI:10.1063/5.0209754