Loading…

Nonvolatile manipulation of electronic and ferromagnetic properties of NiO–Ni epitaxial film by ferroelectric polarization charge

NiO–Ni composite films were heteroepitaxially grown on (111)-oriented ferroelectric 0.31Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PIN-PMN-PT) single-crystal substrates by pulsed laser deposition. The NiO films prepared in high vacuum are n-type conducting and possess room-temperature ferroma...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2020-12, Vol.117 (23)
Main Authors: Yan, Ming-Yuan, Yan, Jian-Min, Zhang, Meng-Yuan, Chen, Ting-Wei, Gao, Guan-Yin, Wang, Fei-Fei, Chai, Yang, Zheng, Ren-Kui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:NiO–Ni composite films were heteroepitaxially grown on (111)-oriented ferroelectric 0.31Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PIN-PMN-PT) single-crystal substrates by pulsed laser deposition. The NiO films prepared in high vacuum are n-type conducting and possess room-temperature ferromagnetism, which originates from oxygen vacancies and the presence of the second Ni phase, respectively. Taking advantage of the electric-field-induced ferroelectric polarization charges, we realized in situ reversible and nonvolatile modulation of both the electrical resistance and magnetism of the film. A relative resistance change of ∼470% is obtained at room temperature, while an appreciable magnetization change of ∼15% was achieved at 50 K by switching the polarization states of PIN-PMN-PT. The coexistence of charge-density-tunable electronic and magnetic properties of NiO–Ni/PIN-PMN-PT heterostructures may provide a strategy to design charge-mediated multiferroic devices for nonvolatile memory and spintronic applications.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0025335