Loading…

A GaN–SiC hybrid material for high-frequency and power electronics

We demonstrate that 3.5% in-plane lattice mismatch between GaN (0001) epitaxial layers and SiC (0001) substrates can be accommodated without triggering extended defects over large areas using a grain-boundary-free AlN nucleation layer (NL). Defect formation in the initial epitaxial growth phase is t...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2018-07, Vol.113 (4)
Main Authors: Chen, Jr-Tai, Bergsten, Johan, Lu, Jun, Janzén, Erik, Thorsell, Mattias, Hultman, Lars, Rorsman, Niklas, Kordina, Olof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate that 3.5% in-plane lattice mismatch between GaN (0001) epitaxial layers and SiC (0001) substrates can be accommodated without triggering extended defects over large areas using a grain-boundary-free AlN nucleation layer (NL). Defect formation in the initial epitaxial growth phase is thus significantly alleviated, confirmed by various characterization techniques. As a result, a high-quality 0.2-μm thin GaN layer can be grown on the AlN NL and directly serve as a channel layer in power devices, like high electron mobility transistors (HEMTs). The channel electrons exhibit a state-of-the-art mobility of >2000 cm2/V-s, in the AlGaN/GaN heterostructures without a conventional thick C- or Fe-doped buffer layer. The highly scaled transistor processed on the heterostructure with a nearly perfect GaN–SiC interface shows excellent DC and microwave performances. A peak RF power density of 5.8 W/mm was obtained at VDSQ = 40 V and a fundamental frequency of 30 GHz. Moreover, an unpassivated 0.2-μm GaN/AlN/SiC stack shows lateral and vertical breakdowns at 1.5 kV. Perfecting the GaN–SiC interface enables a GaN–SiC hybrid material that combines the high-electron-velocity thin GaN with the high-breakdown bulk SiC, which promises further advances in a wide spectrum of high-frequency and power electronics.
ISSN:0003-6951
1077-3118
1077-3118
DOI:10.1063/1.5042049