Loading…

Shear-flow driven current filamentation: Two-dimensional magnetohydrodynamic-simulations

The process of current filamentation in permanently externally driven, initially globally ideal plasmas is investigated by means of two-dimensional magnetohydrodynamic-simulations. This situation is typical for astrophysical systems like jets, and the interstellar and intergalactic medium where the...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2000-12, Vol.7 (12), p.5159-5170
Main Authors: Konz, C., Wiechen, H., Lesch, H.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The process of current filamentation in permanently externally driven, initially globally ideal plasmas is investigated by means of two-dimensional magnetohydrodynamic-simulations. This situation is typical for astrophysical systems like jets, and the interstellar and intergalactic medium where the dynamics is dominated by external forces. Two different cases are studied. In one case, the system is ideal permanently and dissipative processes are excluded. In the second case, a system with a current density dependent resistivity is considered. This resistivity is switched on self-consistently in current filaments and allows for local dissipation due to magnetic reconnection. Thus, one finds tearing of current filaments and, besides, merging of filaments due to coalescence instabilities. Energy input and dissipation finally balance each other and the system reaches a state of constant magnetic energy in time.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.1322558