Loading…

Analytical and Experimental Approach to Acoustic Package Design

The interior noise signature of passenger vehicles is a significant contributor to a customer's perception of quality. The vehicle acoustic package can be an important piece to the acoustic signature, and can be utilized not just to reduce the sound levels inside the vehicle but also to shape t...

Full description

Saved in:
Bibliographic Details
Main Authors: Freeman, Todd, Pickering, DJ
Format: Report
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interior noise signature of passenger vehicles is a significant contributor to a customer's perception of quality. The vehicle acoustic package can be an important piece to the acoustic signature, and can be utilized not just to reduce the sound levels inside the vehicle but also to shape the sound such that it meets the expectations of the customer. For this reason the definition, design, and development of an acoustic package can be vital to meeting vehicle-level acoustic targets. In many situations this development is conducted experimentally, requiring the availability of prototype vehicles and acoustic package components. Of more value is the ability to develop components early in the design phase, leveraging analytical tools to define component-level requirements and targets to meet the vehicle-level targets, and ultimately meet the final customer expectations. This paper presents efforts made to further combine the benefits of experimental and analytical approaches to acoustic package design. The benefits of which include the ability to predict interior sound levels for alternative acoustic package configurations early in the design phase, allowing for listening studies to verify component and vehicle-level targets. Additionally, the performance of alternative designs can be quantified in the frequency domain and using sound quality metrics, while minimizing the necessity for physical testing. A current market vehicle was utilized for this development, in which experimental measurements were developed and conducted for optimum cooperation and utilization of analytical tools. The acoustic package was characterized to predict the sound levels for alternate acoustic package designs, listening studies were performed and metrics were calculated for each configuration to verify performance against the vehicle-levels targets, and developed solutions were verified through experimental testing.
ISSN:0148-7191
2688-3627
DOI:10.4271/2009-01-2119