Loading…

Simultaneous improvement in electrical conductivity and Seebeck coefficient of PEDOT:PSS by N2 pressure-induced nitric acid treatmentElectronic supplementary information (ESI) available: Deconvoluted XPS spectra of S 2p, O 1s and C 1s, interplanar spacing and grain size, and contact angle measurements. See DOI: 10.1039/c8ra06094k

As a thermoelectric (TE) material suited to applications for recycling waste-heat into electricity through the Seebeck effect, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) is of great interest. Our research demonstrates a comprehensive study of different post-treatment m...

Full description

Saved in:
Bibliographic Details
Main Authors: Zar Myint, May Thu, Hada, Masaki, Inoue, Hirotaka, Marui, Tatsuki, Nishikawa, Takeshi, Nishina, Yuta, Ichimura, Susumu, Umeno, Masayoshi, Ko Kyaw, Aung Ko, Hayashi, Yasuhiko
Format: Article
Language:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a thermoelectric (TE) material suited to applications for recycling waste-heat into electricity through the Seebeck effect, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) is of great interest. Our research demonstrates a comprehensive study of different post-treatment methods with nitric acid (HNO 3 ) to enhance the thermoelectric properties of PEDOT:PSS. The optimum conditions are obtained when PEDOT:PSS is treated with HNO 3 for 10 min at room temperature followed by passing nitrogen gas (N 2 ) with a pressure of 0.2 MPa. Upon this treatment, PEDOT:PSS changes from semiconductor-like behaviour to metal-like behaviour, with a simultaneous enhancement in the electrical conductivity and Seebeck coefficient at elevated temperature, resulting in an increase in the thermoelectric power factor from 0.0818 to 94.3 μW m −1 K −2 at 150 °C. The improvement in the TE properties is ascribed to the combined effects of phase segregation and conformational change of the PEDOT due to the weakened coulombic attraction between PEDOT and PSS chains by nitric acid as well as the pressure of the N 2 gas as a mechanical means. As a thermoelectric (TE) material suited to applications for recycling waste-heat into electricity through the Seebeck effect, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) is of great interest.
ISSN:2046-2069
DOI:10.1039/c8ra06094k