Loading…

Decoding the energy landscape: extracting structure, dynamics and thermodynamics

Describing a potential energy surface in terms of local minima and the transition states that connect them provides a conceptual and computational framework for understanding and predicting observable properties. Visualizing the potential energy landscape using disconnectivity graphs supplies a grap...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2012-06, Vol.370 (1969), p.2877-2899
Main Author: Wales, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Describing a potential energy surface in terms of local minima and the transition states that connect them provides a conceptual and computational framework for understanding and predicting observable properties. Visualizing the potential energy landscape using disconnectivity graphs supplies a graphical connection between different structure-seeking systems, which can relax efficiently to a particular morphology. Landscapes involving competing morphologies support multiple potential energy funnels, which may exhibit characteristic heat capacity features and relaxation time scales. These connections between the organization of the potential energy landscape and structure, dynamics and thermodynamics are common to all the examples presented, ranging from atomic and molecular clusters to biomolecules and soft and condensed matter. Further connections between motifs in the energy landscape and the interparticle forces can be developed using symmetry considerations and results from catastrophe theory.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2011.0208