Loading…
Strain gradient plasticity under non-proportional loading
A critical examination is made of two classes of strain gradient plasticity theories currently available for studying micrometre-scale plasticity. One class is characterized by certain stress quantities expressed in terms of increments of strains and their gradients, whereas the other class employs...
Saved in:
Published in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2014-10, Vol.470 (2170), p.20140267 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A critical examination is made of two classes of strain gradient plasticity theories currently available for studying micrometre-scale plasticity. One class is characterized by certain stress quantities expressed in terms of increments of strains and their gradients, whereas the other class employs incremental relationships between all stress quantities and the increments of strains and their gradients. The specific versions of the theories examined coincide for proportional straining. Implications stemming from the differences in formulation of the two classes of theories are explored for two basic examples having non-proportional loading: (i) a layer deformed into the plastic range by tensile stretch with no constraint on plastic flow at the surfaces followed by further stretch with plastic flow constrained at the surfaces and (ii) a layer deformed into the plastic range by tensile stretch followed by bending. The marked difference in predictions by the two theories suggests that critical experiments will be able to distinguish between them. |
---|---|
ISSN: | 1364-5021 1471-2946 |
DOI: | 10.1098/rspa.2014.0267 |