Loading…

N-fertilization of tropical pastures improves performance but not methane emission of Nellore growing bulls

Abstract Grazing management and N-fertilizer have been reported to improve tropical forage productivity and quality, however, their effect on methane emission of grazing animals remains uncertain. Therefore, this study aimed to assess the effects of increasing application rates of nitrogen (N) ferti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of animal science 2023-01, Vol.101
Main Authors: Lima, Lais de Oliveira, Ongaratto, Fernando, Dallantonia, Erick Escobar, Leite, Rhaony Gonçalves, Argentini, Gabriella Patrício, Fernandes, Marcia Helena Machado da Rocha, Reis, Ricardo Andrade, Vyas, Diwakar, Malheiros, Euclides Braga
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Grazing management and N-fertilizer have been reported to improve tropical forage productivity and quality, however, their effect on methane emission of grazing animals remains uncertain. Therefore, this study aimed to assess the effects of increasing application rates of nitrogen (N) fertilization of Marandu palisadegrass under continuous stocking on intake, digestibility, nitrogen balance, and enteric methane emissions of Nellore growing bulls. We hypothesized that changes in the forage nutritive value caused by N fertilization of pastures combined with adequate grazing management (e.g., greater crude protein [CP] and digestibility) would lead to an increase in animal productivity (e.g., greater average daily gain [ADG] and gain per area), and then, to a decrease in methane emission intensity. Treatments consisted of different annual application rates of nitrogen fertilization: 0, 75, and 150 kg N/ha using ammonium nitrate (32% N) as the nitrogen source. The experimental design was completely randomized, with three treatments and four replications (12 paddocks). Intake, digestibility, N balance, and methane emissions were measured in eight animals per treatment. CP intake, digestibility and N balance increased linearly with the increase in N fertilization (P < 0.05). In addition, stocking rate (SR) and ADG linearly increased from 1.75 animal unit (AU = 450 kg)/ha and 0.62 kg/d (0 kg N/ha) to 3.75 AU/ha and 0.82 kg/d (150 kg N/ha), respectively. Individual methane emissions nor methane emission intensity were affected by treatment with an average of 164.7 g/d and 199.7 g/kg ADG (P > 0.05). Annual N fertilization with ammonium nitrate between 75 and 150 kg N/ha in palisadegrass pastures under continuous stocking enhances animal performance per unit area yet not affecting neither methane production nor intensity. Nitogen fertilization of marandu pastures improves grazing beef cattle performance but not affects individual methane emissions. Lay Summary The availability of nitrogen in the soil is one of the main factors that can affect plant growth and characteristics. Nitrogen fertilization is a tool to increase the efficiency in the productive responses of grazing beef cattle, reconciling the greater production per area, reduction of the production cycle, maximization of the use of nutrients, with the maintenance of the system sustainability by enhancing animal production indexes. The present study evaluated performance and methane production of Ne
ISSN:0021-8812
1525-3163
DOI:10.1093/jas/skac362