Loading…

Fossil-fuel and combustion-related air pollution and hypertension in the Sister Study

Hypertension is a leading risk factor for disease burden, with more than 200 million disability-adjusted life-years attributed to high blood pressure in 2015. While outdoor air pollution is associated with cardiovascular disease, the joint effect of exposure to air pollution from combustion products...

Full description

Saved in:
Bibliographic Details
Published in:Environmental pollution (1987) 2022-12, Vol.315, p.120401-120401, Article 120401
Main Authors: Xu, Jing, Niehoff, Nicole M., White, Alexandra J., Werder, Emily J., Sandler, Dale P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hypertension is a leading risk factor for disease burden, with more than 200 million disability-adjusted life-years attributed to high blood pressure in 2015. While outdoor air pollution is associated with cardiovascular disease, the joint effect of exposure to air pollution from combustion products on hypertension has rarely been studied. We conducted a cross-sectional analysis to explore the association between combustion-related air pollution and hypertension. Census-tract levels of ambient concentrations of nine fossil-fuel and combustion-related air toxics (biphenyl, naphthalene, polycyclic organic matter, diesel emissions, 1,3-butadiene, acetaldehyde, benzene, acrolein, and formaldehyde) from the 2005 National Air Toxics Assessment database and NO2 from 2005 monitoring data were linked to baseline residential addresses of 47,467 women in the Sister Study cohort. Hypertension at enrollment (2003–2009) was defined as high systolic (≥140 mm Hg) or diastolic (≥90 mm Hg) blood pressure or taking antihypertensive medication. We used log-binomial regression and quantile-based g-computation to estimate the individual and joint effects of fossil-fuel and combustion-related air pollution on hypertension. Comparing the highest to lowest quartiles, diesel emissions (prevalence ratio (PR) = 1.05, 95% confidence interval (CI) = 1.01,1.08), 1,3-butadiene (PR = 1.04, 95%CI = 1.00,1.07), acetaldehyde (PR = 1.08, 95%CI = 1.04,1.12), benzene (PR = 1.05, 95%CI = 1.02,1.08), formaldehyde (PR = 1.08, 95%CI = 1.04,1.11), and NO2 (PR = 1.08, 95%CI = 1.05,1.12) were individually associated with higher prevalence of hypertension. The PR for the joint effect of increasing all ambient air toxics and NO2 by one quartile was 1.02 (95%CI = 1.01,1.04). Associations varied by race/ethnicity, with stronger associations observed among women reporting races/ethnicities (Hispanic/Latina, non-Hispanic Black and other) other than non-Hispanic White. In conclusion, we found that air pollution from fossil fuel and combustion may be a risk factor for hypertension. [Display omitted] •This large-scale study considered combustion-related air pollution and hypertension.•Diesel emissions, VOCs and NO2 were associated with higher risk of hypertension.•Associations varied by race/ethnicity and geographic region.•The air toxics/NO2 mixture was associated with hypertension.•The joint effect of the mixture was stronger among people other than non-Hispanic White.
ISSN:0269-7491
1873-6424
1873-6424
DOI:10.1016/j.envpol.2022.120401