Loading…

Impact of Polymer-Assisted Epitaxial Graphene Growth on Various Types of SiC Substrates

The growth parameters for epitaxial growth of graphene on silicon carbide (SiC) have been the focus of research over the past few years. However, besides the standard growth parameters, the influence of the substrate pretreatment and properties of the underlying SiC wafer are critical parameters for...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied electronic materials 2022-11, Vol.4 (11), p.5317-5325
Main Authors: Chatterjee, Atasi, Kruskopf, Mattias, Wundrack, Stefan, Hinze, Peter, Pierz, Klaus, Stosch, Rainer, Scherer, Hansjoerg
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The growth parameters for epitaxial growth of graphene on silicon carbide (SiC) have been the focus of research over the past few years. However, besides the standard growth parameters, the influence of the substrate pretreatment and properties of the underlying SiC wafer are critical parameters for optimizing the quality of monolayer graphene on SiC. In this systematic study, we show how the surface properties and the pretreatment determine the quality of monolayer graphene using polymer-assisted sublimation growth (PASG) on SiC. Using the spin-on deposition technique of PASG, several polymer concentrations have been investigated to understand the influence of the polymer content on the final monolayer coverage using wafers of different miscut angles and different polytypes. Confocal laser scanning microscopy (CLSM), atomic force microscopy (AFM), Raman spectroscopy, and scanning electron microscopy (SEM) were used to characterize these films. The results show that, even for SiC substrates with high miscut angles, high-quality graphene is obtained when an appropriate polymer concentration is applied. This is in excellent agreement with the model understanding that an insufficient carbon supply from SiC step edge decomposition can be compensated by additionally providing carbon from a polymer source. The described methods make the PASG spin-on deposition technique more convenient for commercial use.
ISSN:2637-6113
2637-6113
DOI:10.1021/acsaelm.2c00989