Loading…

Differences in carcass chilling rate underlie differences in sensory traits of pork chops from pigs with heavier carcass weights

Abstract Pork hot carcass weights (HCW) have been increasing 0.6 kg per year, and if they continue to increase at this rate, they are projected to reach an average weight of 118 kg by the year 2050. This projection in weight is a concern for pork packers and processors given the challenges in produc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of animal science 2022-08, Vol.100 (8)
Main Authors: Price, Hannah E, Barkley, Kayla E, Lerner, Annie B, Harsh, Bailey N, Woodworth, Jason C, Tokach, Mike D, Dritz, Steve S, Goodband, Robert D, DeRouchey, Joel M, O’Quinn, Travis G, Allerson, Matt W, Fields, Brandon, King, David A, Wheeler, Tommy L, Shackelford, Steven D, Boler, Dustin D, Dilger, Anna C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Pork hot carcass weights (HCW) have been increasing 0.6 kg per year, and if they continue to increase at this rate, they are projected to reach an average weight of 118 kg by the year 2050. This projection in weight is a concern for pork packers and processors given the challenges in product quality from heavier carcasses of broiler chickens. However, previous work demonstrated that pork chops from heavier carcasses were more tender than those from lighter carcasses. Therefore, the objective was to determine the effects of pork hot carcass weights, ranging from 90 to 145 kg with an average of 119 kg, on slice shear force and sensory traits of Longissimus dorsi chops when cooked to 63 or 71 °C, and to assess if differences in chilling rate can explain differences in sensory traits. Carcasses were categorized retrospectively into fast, medium, or slow chilling-rates based on their chilling rate during the first 17 h postmortem. Loin chops cut from 95 boneless loins were cooked to either 63 or 71 °C and evaluated for slice shear force and trained sensory panel traits (tenderness, juiciness, and flavor) using two different research laboratories. Slopes of regression lines and coefficients of determination between HCW and sensory traits were calculated using the REG procedure in SAS and considered different from 0 at P ≤ 0.05. As hot carcass weight increased, chops became more tender as evidenced by a decrease in SSF (63 °C β = −0.0412, P = 0.01; 71 °C β = −0.1005, P < 0.001). Furthermore, HCW explained 25% (R2 = 0.2536) of the variation in chilling rate during the first 5 h of chilling and 32% (R2 = 0.3205) of the variation in chilling rate from 5 to 13 h postmortem. Slow- and medium-rate chilling carcasses were approximately 12 kg heavier (P < 0.05) than fast chilling carcasses. Slice shear force of chops cooked to 63 and 71 °C was reduced in slow and medium chilling compared with fast chilling carcasses. Carcass temperature at 5 h postmortem explained the greatest portion of variation (R2 = 0.071) in slice shear force of chops cooked to 63 °C. These results suggest that carcasses tend to chill slower as weight increases, which resulted in slight improvements in sensory traits of boneless pork chops regardless of final degree of doneness cooking temperature. Heavier pork carcasses produce more tender pork. This has been demonstrated previously. However, these data suggest that slower chilling rates accompany heavier pork carcasses particularly during
ISSN:0021-8812
1525-3163
DOI:10.1093/jas/skac206