Loading…

Polarity and Ferromagnetism in Two-Dimensional Hybrid Copper Perovskites with Chlorinated Aromatic Spacers

Two-dimensional (2D) organic–inorganic hybrid copper halide perovskites have drawn tremendous attention as promising multifunctional materials. Herein, by incorporating ortho-, meta-, and para-chlorine substitutions in the benzylamine structure, we first report the influence of positional isomerism...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2022-03, Vol.34 (5), p.2458-2467
Main Authors: Han, Ceng, Bradford, Alasdair J, McNulty, Jason A, Zhang, Weiguo, Halasyamani, P. Shiv, Slawin, Alexandra M. Z, Morrison, Finlay D, Lee, Stephen L, Lightfoot, Philip
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two-dimensional (2D) organic–inorganic hybrid copper halide perovskites have drawn tremendous attention as promising multifunctional materials. Herein, by incorporating ortho-, meta-, and para-chlorine substitutions in the benzylamine structure, we first report the influence of positional isomerism on the crystal structures of chlorobenzylammonium copper­(II) chloride perovskites A2CuCl4. 2D polar ferromagnets (3-ClbaH)2CuCl4 and (4-ClbaH)2CuCl4 (ClbaH+ = chlorobenzylammonium) are successfully obtained. They both adopt a polar monoclinic space group Cc at room temperature, displaying significant differences in crystal structures. In contrast, (2-ClbaH)2CuCl4 adopts a centrosymmetric space group P 21/ c at room temperature. This associated structural evolution successfully enhances the physical properties of the two polar compounds with high thermal stability, discernible second harmonic generation (SHG) signals, ferromagnetism, and narrow optical band gaps. These findings demonstrate that the introduction of chlorine atoms into the interlayer organic species is a powerful tool to tune crystal symmetries and physical properties, and this inspires further exploration of designing high-performance multifunctional copper-based materials.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.2c00107