Loading…

Neural mapping of prepulse‐induced startle reflex modulation as indices of sensory information processing in healthy and clinical populations: A systematic review

Startle reflex is modulated when a weaker sensory stimulus (“prepulse”) precedes a startling stimulus (“pulse”). Prepulse Inhibition (PPI) is the attenuation of the startle reflex (prepulse precedes pulse by 30–500 ms), whereas Prepulse Facilitation (PPF) is the enhancement of the startle reflex (pr...

Full description

Saved in:
Bibliographic Details
Published in:Human brain mapping 2021-11, Vol.42 (16), p.5495-5518
Main Authors: Naysmith, Laura F., Kumari, Veena, Williams, Steven C. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Startle reflex is modulated when a weaker sensory stimulus (“prepulse”) precedes a startling stimulus (“pulse”). Prepulse Inhibition (PPI) is the attenuation of the startle reflex (prepulse precedes pulse by 30–500 ms), whereas Prepulse Facilitation (PPF) is the enhancement of the startle reflex (prepulse precedes pulse by 500–6000 ms). Here, we critically appraise human studies using functional neuroimaging to establish brain regions associated with PPI and PPF. Of 10 studies, nine studies revealed thalamic, striatal and frontal lobe activation during PPI in healthy groups, and activation deficits in the cortico‐striato‐pallido‐thalamic circuitry in schizophrenia (three studies) and Tourette Syndrome (two studies). One study revealed a shared network for PPI and PPF in frontal regions and cerebellum, with PPF networks recruiting superior medial gyrus and cingulate cortex. The main gaps in the literature are (i) limited PPF research and whether PPI and PPF operate on separate/shared networks, (ii) no data on sex differences in neural underpinnings of PPI and PPF, and (iii) no data on neural underpinnings of PPI and PPF in other clinical disorders.
ISSN:1065-9471
1097-0193
DOI:10.1002/hbm.25631