Loading…

Delineating the potential targets of thymoquinone in ESKAPE pathogens using a computational approach

The present study was designed to identify and analyze the targets of thymoquinone on drug resistant pathogens employing in silico tools. The target identification was performed using STITCH tool, followed by the functional analysis of protein targets by VICMPred. Further, VirulentPred was used to d...

Full description

Saved in:
Bibliographic Details
Published in:In silico pharmacology 2021-09, Vol.9 (1), p.52-52, Article 52
Main Authors: Girija, A. S. Smiline, Gnanendra, S., Paramasivam, A., Priyadharsini, J. Vijayashree
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study was designed to identify and analyze the targets of thymoquinone on drug resistant pathogens employing in silico tools. The target identification was performed using STITCH tool, followed by the functional analysis of protein targets by VICMPred. Further, VirulentPred was used to determine the nature of virulence of target proteins. The putative epitopes present on the virulent proteins were identified using BepiPred tool. The subcellular location of the virulent proteins was assessed using PSORTb. The results showed multiple targets of the pathogens being targeted. The nitric-oxide synthase-like protein of Staphylococcus aureus and acetyltransferase family protein, histone acetyltransferase HPA2, GNAT family acetyltransferase of Acinetobacter baumannii was found to be the virulent proteins interacting with thymoquinone. Molinspiration assessments showed zero violations suggesting the druggability of TQ. The study unveils the molecular mechanisms underlying the antimicrobial effect of thymoquinone as demonstrated by in silico procedures.
ISSN:2193-9616
2193-9616
DOI:10.1007/s40203-021-00111-z