Loading…

Movement, Encounter Rate, and Collective Behavior in Ant Colonies

Spatial patterns of movement regulate many aspects of social insect behavior, because how workers move around, and how many are there, determines how often they meet and interact. Interactions are usually olfactory; for example, in ants, by means of antennal contact in which one worker assesses the...

Full description

Saved in:
Bibliographic Details
Published in:Annals of the Entomological Society of America 2021-09, Vol.114 (5), p.541-546
Main Author: Gordon, Deborah M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spatial patterns of movement regulate many aspects of social insect behavior, because how workers move around, and how many are there, determines how often they meet and interact. Interactions are usually olfactory; for example, in ants, by means of antennal contact in which one worker assesses the cuticular hydrocarbons of another. Encounter rates may be a simple outcome of local density: a worker experiences more encounters, the more other workers there are around it. This means that encounter rate can be used as a cue for overall density even though no individual can assess global density. Encounter rate as a cue for local density regulates many aspects of social insect behavior, including collective search, task allocation, nest choice, and traffic flow. As colonies grow older and larger, encounter rates change, which leads to changes in task allocation. Nest size affects local density and movement patterns, which influences encounter rate, so that nest size and connectivity influence colony behavior. However, encounter rate is not a simple function of local density when individuals change their movement in response to encounters, thus influencing further encounter rates. Natural selection on the regulation of collective behavior can draw on variation within and among colonies in the relation of movement patterns, encounter rate, and response to encounters.
ISSN:0013-8746
1938-2901
DOI:10.1093/aesa/saaa036