Loading…

Mining for Ligandable Cavities in RNA

Identifying potential ligand binding cavities is a critical step in structure-based screening of biomolecular targets. Cavity mapping methods can detect such binding cavities; however, for ribonucleic acid (RNA) targets, determining which of the detected cavities are “ligandable” remains an unsolved...

Full description

Saved in:
Bibliographic Details
Published in:ACS medicinal chemistry letters 2021-06, Vol.12 (6), p.928-934
Main Authors: Xie, Jingru, Frank, Aaron T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Identifying potential ligand binding cavities is a critical step in structure-based screening of biomolecular targets. Cavity mapping methods can detect such binding cavities; however, for ribonucleic acid (RNA) targets, determining which of the detected cavities are “ligandable” remains an unsolved challenge. In this study, we trained a set of machine learning classifiers to distinguish ligandable RNA cavities from decoy cavities. Application of our classifiers to two independent test sets demonstrated that we could recover ligandable cavities from decoys with an AUC > 0.83. Interestingly, when we applied our classifiers to a library of modeled structures of the HIV-1 transactivation response (TAR) element RNA, we found that several of the conformers that harbored cavities with high ligandability scores resembled known holo-TAR structures. On the basis of our results, we envision that our classifiers could find utility as a tool to parse RNA structures and prospectively mine for ligandable binding cavities and, in so doing, facilitate structure-based virtual screening efforts against RNA drug targets.
ISSN:1948-5875
1948-5875
DOI:10.1021/acsmedchemlett.1c00068