Loading…

Thermal squeezing of the seismogenic zone controlled rupture of the volcano-rooted Flores Thrust

Temperature plays a critical role in defining the seismogenic zone, the area of the crust where earthquakes most commonly occur; however, thermal controls on fault ruptures are rarely observed directly. We used a rapidly deployed seismic array to monitor an unusual earthquake cascade in 2018 at Lomb...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2021-01, Vol.7 (5)
Main Authors: Lythgoe, Karen, Muzli, Muzli, Bradley, Kyle, Wang, Teng, Nugraha, Andri Dian, Zulfakriza, Zulfakriza, Widiyantoro, Sri, Wei, Shengji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Temperature plays a critical role in defining the seismogenic zone, the area of the crust where earthquakes most commonly occur; however, thermal controls on fault ruptures are rarely observed directly. We used a rapidly deployed seismic array to monitor an unusual earthquake cascade in 2018 at Lombok, Indonesia, during which two magnitude 6.9 earthquakes with surprisingly different rupture characteristics nucleated beneath an active arc volcano. The thermal imprint of the volcano on the fault elevated the base of the seismogenic zone beneath the volcanic edifice by 8 km, while also reducing its width. This thermal "squeezing" directly controlled the location, directivity, dynamics, and magnitude of the earthquake cascade. Earthquake segmentation due to thermal structure can occur where strong temperature gradients exist on a fault.
ISSN:2375-2548
2375-2548
DOI:10.1126/SCIADV.ABE2348