Loading…

Molecular characterization and epitope-based vaccine predictions for ompA gene associated with biofilm formation in multidrug-resistant strains of A.baumannii

The present study was conducted to molecularly characterize the biofilm associated ompA gene from the drug resistant strains of A. baumannii and its immuno-dominant vaccine epitope predictions through immuno-informatic approach. ompA was amplified by PCR from the genomic DNA and was sequenced. Using...

Full description

Saved in:
Bibliographic Details
Published in:In silico pharmacology 2021-01, Vol.9 (1), p.15, Article 15
Main Authors: Sogasu, Deepthi, Girija, A. S. Smiline, Gunasekaran, Shoba, Priyadharsini, J. Vijayashree
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study was conducted to molecularly characterize the biofilm associated ompA gene from the drug resistant strains of A. baumannii and its immuno-dominant vaccine epitope predictions through immuno-informatic approach. ompA was amplified by PCR from the genomic DNA and was sequenced. Using the ORF, ompA protein sequence was retrieved and was subjected for IEDB T cell and B cell epitope analysis for the selection of the epitope peptides. Selected peptides were evaluated using appropriate servers and tools to assess the propensity for its antigenicity, solubility, physico-chemical property, toxigenicity and class-I immunogenicity. MHC class I and II restriction of HLA alleles was also performed. 48% (n = 24) of the strains possessed ompA gene. Protein structure was successfully retrieved with the selection of two epitopes viz., E1- FDGVNRGTRGTSEEGTLGNA and E2-KLSEYPNATARIEGHTDNTGPRKL. Final docking with TLR-2, showed E2 as the best epitope candidate predicted with the highest number of hydrogen bonds.
ISSN:2193-9616
2193-9616
DOI:10.1007/s40203-020-00074-7