Loading…

Dynamics of Molecules Observed at Crude-Oil–Gas Interfaces by Time-of-Flight Secondary Ion Mass Spectrometry Imaging

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging provides molecular speciation at the micrometer scale, while the penetration depth of the primary ion beam is limited to the top-layers of a sample. These combined properties make TOF-SIMS potentially an ideal technique to study oil–g...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry 2020-11, Vol.31 (11), p.2356-2361
Main Authors: Arisz, P. W. F, Pureveen, J. B. M, Heeren, R. M. A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging provides molecular speciation at the micrometer scale, while the penetration depth of the primary ion beam is limited to the top-layers of a sample. These combined properties make TOF-SIMS potentially an ideal technique to study oil–gas interfaces. TOF-SIMS spectra of three crude oils were evaluated, and only low-mass fragment ions could be assigned to molecular structures unambiguously. Films of crude oils were incubated under air, oil vapor, or water vapor for various times. TOF-SIMS images of a polar crude oil revealed feeble structures of ∼10 μm large round patches that grew to ∼30 μm large crystals when incubated under air and oil vapor, respectively. Principal component analysis of the images showed that the continuous phase had typical aromatic signatures, while the patches and crystals had alkane-like characteristics. No features showed up when the oil film was incubated under water vapor, which indicated that saturated water vapor prevented the accumulation of nonpolar alkane-like compounds at the oil–gas interface. These examples showed that crude oils do not behave as dead fluids but that their constituents accumulate at the oil–gas interfaces in a dynamic way.
ISSN:1044-0305
1879-1123
DOI:10.1021/jasms.0c00290