Loading…

Shells of the bivalve Astarte moerchi give new evidence of a strong pelagic-benthic coupling shift occurring since the late 1970s in the North Water polynya

Climate changes in the Arctic may weaken the currently tight pelagic-benthic coupling. In response to decreasing sea ice cover, arctic marine systems are expected to shift from a ‘sea-ice algae–benthos' to a ‘phytoplankton-zooplankton’ dominance. We used mollusc shells as bioarchives and fatty...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2020-10, Vol.378 (2181), p.20190353
Main Authors: Olivier, Frédéric, Gaillard, Blandine, Thébault, Julien, Meziane, Tarik, Tremblay, Réjean, Dumont, Dany, Bélanger, Simon, Gosselin, Michel, Jolivet, Aurélie, Chauvaud, Laurent, Martel, André L., Rysgaard, Søren, Olivier, Anne-Hélène, Pettré, Julien, Mars, Jérôme, Gerber, Silvain, Archambault, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Climate changes in the Arctic may weaken the currently tight pelagic-benthic coupling. In response to decreasing sea ice cover, arctic marine systems are expected to shift from a ‘sea-ice algae–benthos' to a ‘phytoplankton-zooplankton’ dominance. We used mollusc shells as bioarchives and fatty acid trophic markers to estimate the effects of the reduction of sea ice cover on the food exported to the seafloor. Bathyal bivalve Astarte moerchi living at 600 m depth in northern Baffin Bay reveals a clear shift in growth variations and Ba/Ca ratios since the late 1970s, which we relate to a change in food availability. Tissue fatty acid compositions show that this species feeds mainly on microalgae exported from the euphotic zone to the seabed. We, therefore, suggest that changes in pelagic-benthic coupling are likely due either to local changes in sea ice dynamics, mediated through bottom-up regulation exerted by sea ice on phytoplankton production, or to a mismatch between phytoplankton bloom and zooplankton grazing due to phenological change. Both possibilities allow a more regular and increased transfer of food to the seabed. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2019.0353