Loading…

Grating-based spectral X-ray dark-field imaging for correlation with structural size measures

Abstract X-ray dark-field (XDF) imaging accesses information on the small-angle scattering properties of the sample. With grating interferometry, the measured scattering signal is related to the sample’s autocorrelation function, which was previously demonstrated for simple samples, such as mono-dis...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-08, Vol.10 (1), p.13195-13195, Article 13195
Main Authors: Taphorn, Kirsten, De Marco, Fabio, Andrejewski, Jana, Sellerer, Thorsten, Pfeiffer, Franz, Herzen, Julia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract X-ray dark-field (XDF) imaging accesses information on the small-angle scattering properties of the sample. With grating interferometry, the measured scattering signal is related to the sample’s autocorrelation function, which was previously demonstrated for simple samples, such as mono-dispersed microspheres for which the autocorrelation function is mathematically given. However, in potential clinical applications of XDF imaging, complex microstructures, such as lung parenchyma are under investigation. Their bahaviour in XDF imaging is not yet known and no mathematical description of the autocorrelation function is derived so far. In this work we demonstrate the previously established correlation of the XDF data of complex sample structures with their autocorrelation function to be impractical. Furthermore, we propose an applicable correlation between XDF and the sample’s structural parameter on the basis of mean chord length, a medically-approved measure for alveolar structure, known to be affected by structural lung diseases. Our findings reveal a correlation between energy-dependent XDF imaging and the sample’s mean chord length. By that, a connection between a medical measure for alveoli and XDF is achieved, which is particularly important regarding potential future XDF lung imaging applications for the assessment of alveoli size in diagnostic lung imaging.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-70011-3