Loading…

Detection of Circulating Tumor DNA in Patients with Pancreatic Cancer Using Digital Next-Generation Sequencing

Circulating tumor DNA (ctDNA) measurements can be used to estimate tumor burden, but avoiding false-positive results is challenging. Herein, digital next-generation sequencing (NGS) is evaluated as a ctDNA detection method. Plasma KRAS and GNAS hotspot mutation levels were measured in 140 subjects,...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of molecular diagnostics : JMD 2020-06, Vol.22 (6), p.748-756
Main Authors: Macgregor-Das, Anne, Yu, Jun, Tamura, Koji, Abe, Toshiya, Suenaga, Masaya, Shindo, Koji, Borges, Michael, Koi, Chiho, Kohi, Shiro, Sadakari, Yoshihiko, Dal Molin, Marco, Almario, Jose A., Ford, Madeline, Chuidian, Miguel, Burkhart, Richard, He, Jin, Hruban, Ralph H., Eshleman, James R., Klein, Alison P., Wolfgang, Christopher L., Canto, Marcia I., Goggins, Michael
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Circulating tumor DNA (ctDNA) measurements can be used to estimate tumor burden, but avoiding false-positive results is challenging. Herein, digital next-generation sequencing (NGS) is evaluated as a ctDNA detection method. Plasma KRAS and GNAS hotspot mutation levels were measured in 140 subjects, including 67 with pancreatic ductal adenocarcinoma and 73 healthy and disease controls. To limit chemical modifications of DNA that yield false-positive mutation calls, plasma DNA was enzymatically pretreated, after which DNA was aliquoted for digital detection of mutations (up to 384 aliquots/sample) by PCR and NGS. A digital NGS score of two SDs above the mean in controls was considered positive. Thirty-seven percent of patients with pancreatic cancer, including 31% of patients with stages I/II disease, had positive KRAS codon 12 ctDNA scores; only one patient had a positive GNAS mutation score. Two disease control patients had positive ctDNA scores. Low-normal–range digital NGS scores at mutation hotspots were found at similar levels in healthy and disease controls, usually at sites of cytosine deamination, and were likely the result of chemical modification of plasma DNA and NGS error rather than true mutations. Digital NGS detects mutated ctDNA in patients with pancreatic cancer with similar yield to other methods. Detection of low-level, true-positive ctDNA is limited by frequent low-level detection of false-positive mutation calls in plasma DNA from controls.
ISSN:1525-1578
1943-7811
DOI:10.1016/j.jmoldx.2020.02.010