Loading…

Role of the PGE2 receptor subtypes EP1, EP2, and EP3 in repetitive traumatic brain injury

Aims The goal was to explore the signaling pathways of PGE2 to investigate therapeutic effects against secondary injuries following TBI. Methods Young (4.9 ± 1.0 months) and aged (20.4 ± 1.4 months) male wild type (WT) C57BL/6 and PGE2 EP1, 2, and 3 receptor knockout mice were selected to either rec...

Full description

Saved in:
Bibliographic Details
Published in:CNS neuroscience & therapeutics 2020-06, Vol.26 (6), p.628-635
Main Authors: Catlin, James, Leclerc, Jenna L., Shukla, Krunal, Marini, Sarah M., Doré, Sylvain
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aims The goal was to explore the signaling pathways of PGE2 to investigate therapeutic effects against secondary injuries following TBI. Methods Young (4.9 ± 1.0 months) and aged (20.4 ± 1.4 months) male wild type (WT) C57BL/6 and PGE2 EP1, 2, and 3 receptor knockout mice were selected to either receive sham or repetitive concussive head injury. Immunohistochemistry protocols with Iba1 and GFAP were performed to evaluate microgliosis and astrogliosis in the hippocampus, two critical components of neuroinflammation. Passive avoidance test measured memory function associated with the hippocampus. Results No differences in hippocampal microgliosis were found when aged EP2−/− and EP3−/− mice were compared with aged WT mice. However, the aged EP1−/− mice had 69.2 ± 7.5% less hippocampal microgliosis in the contralateral hemisphere compared with WT aged mice. Compared with aged EP2−/− and EP3−/−, EP1−/− aged mice had 78.9 ± 5.1% and 74.7 ± 6.2% less hippocampal microgliosis in the contralateral hemisphere. Within the EP1−/− mice, aged mice had 90.7 ± 2.7% and 81.1 ± 5.6% less hippocampal microgliosis compared with EP1−/− young mice in the contralateral and ipsilateral hemispheres, respectively. No differences were noted in all groups for astrogliosis. There was a significant difference in latency time within EP1−/−, EP2−/−, and EP3−/− on day 1 and day 2 in aged and young mice. Conclusion These findings demonstrate that the PGE2 EP receptors may be potential therapeutic targets to treat repetitive concussions and other acute brain injuries.
ISSN:1755-5930
1755-5949
DOI:10.1111/cns.13228