Loading…

Ectopic expression of the sesame MYB transcription factor SiMYB305 promotes root growth and modulates ABA-mediated tolerance to drought and salt stresses in Arabidopsis

Abstract An increasing number of candidate genes related to abiotic stress tolerance are being discovered and proposed to improve the existing cultivars of the high oil-bearing crop sesame (Sesamum indicum L.). However, the in planta functional validation of these genes is remarkably lacking. In thi...

Full description

Saved in:
Bibliographic Details
Published in:AoB plants 2020-02, Vol.12 (1), p.plz081-plz081
Main Authors: Dossa, Komivi, Mmadi, Marie A, Zhou, Rong, Liu, Aili, Yang, Yuanxiao, Diouf, Diaga, You, Jun, Zhang, Xiurong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract An increasing number of candidate genes related to abiotic stress tolerance are being discovered and proposed to improve the existing cultivars of the high oil-bearing crop sesame (Sesamum indicum L.). However, the in planta functional validation of these genes is remarkably lacking. In this study, we cloned a novel sesame R2-R3 MYB gene SiMYB75 which is strongly induced by drought, sodium chloride (NaCl), abscisic acid (ABA) and mannitol. SiMYB75 is expressed in various sesame tissues, especially in root and its protein is predicted to be located in the nucleus. Ectopic over-expression of SiMYB75 in Arabidopsis notably promoted root growth and improved plant tolerance to drought, NaCl and mannitol treatments. Furthermore, SiMYB75 over-expressing lines accumulated higher content of ABA than wild-type plants under stresses and also increased sensitivity to ABA. Physiological analyses revealed that SiMYB75 confers abiotic stress tolerance by promoting stomatal closure to reduce water loss; inducing a strong reactive oxygen species scavenging activity to alleviate cell damage and apoptosis; and also, up-regulating the expression levels of various stress-marker genes in the ABA-dependent pathways. Our data suggested that SiMYB75 positively modulates drought, salt and osmotic stresses responses through ABA-mediated pathways. Thus, SiMYB75 could be a promising candidate gene for the improvement of abiotic stress tolerance in crop species including sesame. In this study, the gene SiMYB75 was cloned from sesame (Sesamum indicum L.) and was found to be strongly induced by drought, sodium chloride (NaCl), abscisic acid (ABA) and mannitol. SiMYB75 displayed a root preferential expression and the ectopic over-expression in Arabidopsis thaliana demonstrated that it promotes root growth and is involved in drought and salinity tolerance by modulating the expression of ABA-related genes and strongly reducing reactive oxygen species production in cells. SiMYB75 could be a promising candidate gene for the improvement of abiotic stress tolerance in crop species including sesame..
ISSN:2041-2851
2041-2851
DOI:10.1093/aobpla/plz081