Loading…

Evaluation of a Zn-2Ag-1.8Au-0.2V Alloy for Absorbable Biocompatible Materials

Zinc (Zn) and Zn-based alloys have been proposed as a new generation of absorbable metals mainly owing to the moderate degradation behavior of zinc between magnesium and iron. Nonetheless, mechanical strength of pure Zn is relatively poor, making it insufficient for the majority of clinical applicat...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2019-12, Vol.13 (1), p.56
Main Authors: Li, Ping, Schille, Christine, Schweizer, Ernst, Kimmerle-Müller, Evi, Rupp, Frank, Han, Xingting, Heiss, Alexander, Richter, Andreas, Legner, Claudia, Klotz, Ulrich E, Geis-Gerstorfer, Jürgen, Scheideler, Lutz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zinc (Zn) and Zn-based alloys have been proposed as a new generation of absorbable metals mainly owing to the moderate degradation behavior of zinc between magnesium and iron. Nonetheless, mechanical strength of pure Zn is relatively poor, making it insufficient for the majority of clinical applications. In this study, a novel Zn-2Ag-1.8Au-0.2V (wt.%) alloy (Zn-Ag-Au-V) was fabricated and investigated for use as a potential absorbable biocompatible material. Microstructural characterization indicated an effective grain-refining effect on the Zn alloy after a thermomechanical treatment. Compared to pure Zn, the Zn-Ag-Au-V alloy showed significantly enhanced mechanical properties, with a yield strength of 168 MPa, an ultimate tensile strength of 233 MPa, and an elongation of 17%. Immersion test indicated that the degradation rate of the Zn-Ag-Au-V alloy in Dulbecco's phosphate buffered saline was approximately 7.34 ± 0.64 μm/year, thus being slightly lower than that of pure Zn. Biocompatibility tests with L929 and Saos-2 cells showed a moderate cytotoxicity, alloy extracts at 16.7%, and 10% concentration did not affect metabolic activity and cell proliferation. Plaque formation in vitro was reduced, the Zn-Ag-Au-V surface inhibited adhesion and biofilm formation by the early oral colonizer , indicating antibacterial properties of the alloy.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13010056