Loading…

A practical solution of the Bethe equation in the energy range applicable to radiotherapy and radionuclide production

While the dose deposition of charged hadrons has received much attention over the last decades starting in 1930 with the publication of the Bethe equation, there are still practical obstacles in implementing it in fields like radiotherapy and isotope production on cyclotrons. This is especially true...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-11, Vol.9 (1), p.17599-9, Article 17599
Main Authors: Martinez, D M, Rahmani, M, Burbadge, C, Hoehr, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While the dose deposition of charged hadrons has received much attention over the last decades starting in 1930 with the publication of the Bethe equation, there are still practical obstacles in implementing it in fields like radiotherapy and isotope production on cyclotrons. This is especially true if the target material consists of non-homogeneous materials, either consisting of a mixture of different elements or experiencing phase changes during irradiation. While Monte-Carlo methods have had great success in describing these more difficult target materials, they come at a computational cost, especially if the problem is time-dependent. This can greatly hinder optimal advancement in therapy and isotope targetry. Here, a regular perturbation method is used to solve the Bethe equation in the limit of small relativistic effects. Particular focus is given to incident energy level relevant to radionuclide production and radiotherapy applications, i.e. 10-200 MeV. We present a series solution for the range and dose distribution in terms of elementary functions, as opposed to special functions which will aid in uptake by practitioners.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-54103-3