Loading…

Young Accreting Compact Objects in M31: The Combined Power of NuSTAR, Chandra, and Hubble

We present 15 high-mass X-ray binary (HMXB) candidates in the disk of M31 for which we are able to infer compact object type, spectral type of the donor star, and age using multiwavelength observations from NuSTAR, Chandra, and the Hubble Space Telescope. The hard X-ray colors and luminosities from...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2018-07, Vol.862 (1), p.28
Main Authors: Lazzarini, M., Hornschemeier, A. E., Williams, B. F., Wik, D., Vulic, N., Yukita, M., Zezas, A., Lewis, A. R., Durbin, M., Ptak, A., Bodaghee, A., Lehmer, B. D., Antoniou, V., Maccarone, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present 15 high-mass X-ray binary (HMXB) candidates in the disk of M31 for which we are able to infer compact object type, spectral type of the donor star, and age using multiwavelength observations from NuSTAR, Chandra, and the Hubble Space Telescope. The hard X-ray colors and luminosities from NuSTAR permit the tentative classification of accreting X-ray binary systems by compact object type, distinguishing black hole from neutron star systems. We find hard-state black holes, pulsars, and non-magnetized neutron stars associated with optical point-source counterparts with similar frequency. We also find nine non-magnetized neutron stars coincident with globular clusters and an equal number of pulsars with and without point-source optical counterparts. We perform spectral energy distribution (SED) fitting for the most likely optical counterparts to the HMXB candidates, finding seven likely high-mass stars and one possible red helium-burning star. The remaining seven HMXB optical counterparts have poor SED fits, so their companion stars remain unclassified. Using published star formation histories, we find that the majority of HMXB candidates-X-ray sources with UV-bright point-source optical counterpart candidates-are found in regions with star formation bursts less than 50 Myr ago, and three are associated with young stellar ages (
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aacb2a