Loading…

Aversive Conditioning in the Tardigrade, Dactylobiotus Dispar

Defensive responses to threatening events in the environment are displayed by a vast number of animals, both vertebrate and invertebrate. These defensive responses can be associated with salient neutral stimuli that are present along with the threatening stimulus. This is referred to as aversive con...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental psychology. Animal behavior processes 2019-10, Vol.45 (4), p.405-412
Main Authors: Zhou, Sarah, DeFranco, Joseph P., Blaha, Nicholas T., Dwivedy, Pritty, Culver, Ashley, Nallamala, Hinduja, Chelluri, Srikanth, Dumas, Theodore C.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Defensive responses to threatening events in the environment are displayed by a vast number of animals, both vertebrate and invertebrate. These defensive responses can be associated with salient neutral stimuli that are present along with the threatening stimulus. This is referred to as aversive conditioning. Animals with more simple nervous systems, such as Aplysia, C elegans, and Drosophila, have facilitated identification of some the physiological processes that support aversive conditioning. Perhaps even more basic information regarding the neurobiology of learning and memory may be gleaned from animals that have special characteristics not found in other species. Tardigrades, also known as "water bears," are microscopic eight-legged animals that live in various aquatic and terrestrial environments. They are known for their resilience to extreme conditions because of their ability to enter a cryptobiotic "tun" state during which they turn off their metabolism. Thus, tardigrades present an ideal model to study the metabolic requirements for memory storage. However, there is no prior research on tardigrade learning and memory. The purpose of this study was to demonstrate aversive conditioning in a tardigrade species, Dactylobiotus dispar. Associative learning was confirmed by numerous control conditions (unconditioned stimulus [US] only, conditional stimulus [CS] only, backward pairing, random pairing). Short-term memories were formed after a single pairing of the CS and US. This research introduces an important new animal model to the study of the neurobiology of aversive conditioning with important ramifications for understanding the metabolic influences on learning and memory.
ISSN:2329-8456
2329-8464
2329-8464
DOI:10.1037/xan0000218