Loading…

Regulating response and leukocyte adhesion of human endothelial cell by gradient nanohole substrate

Understanding signals in the microenvironment that regulate endothelial cell behavior are important in tissue engineering. Although many studies have examined the cellular effects of nanotopography, no study has investigated the functional regulation of human endothelial cells grown on nano-sized gr...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-05, Vol.9 (1), p.7272, Article 7272
Main Authors: Huang, Li-Hua, Cui, Long-Hui, Kim, Dae Hwan, Joo, Hyung Joon, Seo, Ha-Rim, Choi, Seung-Cheol, Noh, Ji-Min, Lee, Kyu Back, Hong, Soon Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-ea3b76f81318050bfb87b819981a3b1b4186568afc99698ecece53b0c79fc86b3
cites cdi_FETCH-LOGICAL-c511t-ea3b76f81318050bfb87b819981a3b1b4186568afc99698ecece53b0c79fc86b3
container_end_page
container_issue 1
container_start_page 7272
container_title Scientific reports
container_volume 9
creator Huang, Li-Hua
Cui, Long-Hui
Kim, Dae Hwan
Joo, Hyung Joon
Seo, Ha-Rim
Choi, Seung-Cheol
Noh, Ji-Min
Lee, Kyu Back
Hong, Soon Jun
description Understanding signals in the microenvironment that regulate endothelial cell behavior are important in tissue engineering. Although many studies have examined the cellular effects of nanotopography, no study has investigated the functional regulation of human endothelial cells grown on nano-sized gradient hole substrate. We examined the cellular response of human umbilical vein endothelial cells (HUVECs) by using a gradient nanohole substrate (GHS) with three different types of nanohole patterns (HP): which diameters were described in HP1, 120–200 nm; HP2, 200–280 nm; HP3, 280–360 nm. In results, HP2 GHS increased the attachment and proliferation of HUVECs. Also, gene expression of focal adhesion markers in HUVECs was significantly increased on HP2 GHS. In vitro tube formation assay showed the enhancement of tubular network formation of HUVECs after priming on GHS compared to Flat. Furthermore, leukocyte adhesion was also reduced in the HUVECs in a hole-diameter dependent manner. To summarize, optimal proliferations with reduced leukocyte adhesion of HUVECs were achieved by gradient nanohole substrate with 200–280 nm-sized holes.
doi_str_mv 10.1038/s41598-019-43573-0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6514209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224343409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-ea3b76f81318050bfb87b819981a3b1b4186568afc99698ecece53b0c79fc86b3</originalsourceid><addsrcrecordid>eNp9UU1LHTEUDVJRefoHXEig69F8TGaSTaFIWwWhILoOSebOxzMveU1mCu_fm_rU2k3vXdyEc-65Bw5C55RcUsLlVa6pULIiVFU1Fy2vyAE6YaQWFeOMffrwPkZnOa9JKcFUTdUROuaUyIax9gS5exgWb-YpDDhB3saQAZvQYQ_LU3S7ufy6EfIUA449HpeNCRhCF-cR_GQ8duA9tjs8JNNNEGYcTIhj9IDzYvOczAyn6LA3PsPZ61yhx-_fHq5vqrufP26vv95VTlA6V2C4bZteUk4lEcT2VrZWUqUkLQi1NZWNaKTpnVKNkuBKC26Ja1XvZGP5Cn3Z624Xu4HOFTfJeL1N08aknY5m0v8iYRr1EH_rRtCaEVUEPr8KpPhrgTzrdVxSKJ41Y6zmpV9YbM9yKeacoH-_QIn-k43eZ6NLNvolG03K0sVHb-8rb0kUAt8TcoHCAOnv7f_IPgMzX5xb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224343409</pqid></control><display><type>article</type><title>Regulating response and leukocyte adhesion of human endothelial cell by gradient nanohole substrate</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Huang, Li-Hua ; Cui, Long-Hui ; Kim, Dae Hwan ; Joo, Hyung Joon ; Seo, Ha-Rim ; Choi, Seung-Cheol ; Noh, Ji-Min ; Lee, Kyu Back ; Hong, Soon Jun</creator><creatorcontrib>Huang, Li-Hua ; Cui, Long-Hui ; Kim, Dae Hwan ; Joo, Hyung Joon ; Seo, Ha-Rim ; Choi, Seung-Cheol ; Noh, Ji-Min ; Lee, Kyu Back ; Hong, Soon Jun</creatorcontrib><description>Understanding signals in the microenvironment that regulate endothelial cell behavior are important in tissue engineering. Although many studies have examined the cellular effects of nanotopography, no study has investigated the functional regulation of human endothelial cells grown on nano-sized gradient hole substrate. We examined the cellular response of human umbilical vein endothelial cells (HUVECs) by using a gradient nanohole substrate (GHS) with three different types of nanohole patterns (HP): which diameters were described in HP1, 120–200 nm; HP2, 200–280 nm; HP3, 280–360 nm. In results, HP2 GHS increased the attachment and proliferation of HUVECs. Also, gene expression of focal adhesion markers in HUVECs was significantly increased on HP2 GHS. In vitro tube formation assay showed the enhancement of tubular network formation of HUVECs after priming on GHS compared to Flat. Furthermore, leukocyte adhesion was also reduced in the HUVECs in a hole-diameter dependent manner. To summarize, optimal proliferations with reduced leukocyte adhesion of HUVECs were achieved by gradient nanohole substrate with 200–280 nm-sized holes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-43573-0</identifier><identifier>PMID: 31086227</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/2 ; 13/21 ; 14/1 ; 14/19 ; 38 ; 38/77 ; 631/61/350/1058 ; 631/80/79/2066 ; Adhesion ; Basement Membrane - metabolism ; Blotting, Western ; Cell Adhesion ; Cytokines - metabolism ; Endothelial cells ; Fluorescent Antibody Technique ; Gene expression ; Human Umbilical Vein Endothelial Cells - metabolism ; Humanities and Social Sciences ; Humans ; In Situ Nick-End Labeling ; Leukocytes - metabolism ; multidisciplinary ; Nanopores - ultrastructure ; Reverse Transcriptase Polymerase Chain Reaction ; Science ; Science (multidisciplinary) ; Substrates ; Tissue engineering ; Umbilical vein</subject><ispartof>Scientific reports, 2019-05, Vol.9 (1), p.7272, Article 7272</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-ea3b76f81318050bfb87b819981a3b1b4186568afc99698ecece53b0c79fc86b3</citedby><cites>FETCH-LOGICAL-c511t-ea3b76f81318050bfb87b819981a3b1b4186568afc99698ecece53b0c79fc86b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2224343409/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2224343409?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,730,783,787,888,25765,27936,27937,37024,44602,53804,53806,75454</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31086227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Li-Hua</creatorcontrib><creatorcontrib>Cui, Long-Hui</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><creatorcontrib>Joo, Hyung Joon</creatorcontrib><creatorcontrib>Seo, Ha-Rim</creatorcontrib><creatorcontrib>Choi, Seung-Cheol</creatorcontrib><creatorcontrib>Noh, Ji-Min</creatorcontrib><creatorcontrib>Lee, Kyu Back</creatorcontrib><creatorcontrib>Hong, Soon Jun</creatorcontrib><title>Regulating response and leukocyte adhesion of human endothelial cell by gradient nanohole substrate</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Understanding signals in the microenvironment that regulate endothelial cell behavior are important in tissue engineering. Although many studies have examined the cellular effects of nanotopography, no study has investigated the functional regulation of human endothelial cells grown on nano-sized gradient hole substrate. We examined the cellular response of human umbilical vein endothelial cells (HUVECs) by using a gradient nanohole substrate (GHS) with three different types of nanohole patterns (HP): which diameters were described in HP1, 120–200 nm; HP2, 200–280 nm; HP3, 280–360 nm. In results, HP2 GHS increased the attachment and proliferation of HUVECs. Also, gene expression of focal adhesion markers in HUVECs was significantly increased on HP2 GHS. In vitro tube formation assay showed the enhancement of tubular network formation of HUVECs after priming on GHS compared to Flat. Furthermore, leukocyte adhesion was also reduced in the HUVECs in a hole-diameter dependent manner. To summarize, optimal proliferations with reduced leukocyte adhesion of HUVECs were achieved by gradient nanohole substrate with 200–280 nm-sized holes.</description><subject>13/2</subject><subject>13/21</subject><subject>14/1</subject><subject>14/19</subject><subject>38</subject><subject>38/77</subject><subject>631/61/350/1058</subject><subject>631/80/79/2066</subject><subject>Adhesion</subject><subject>Basement Membrane - metabolism</subject><subject>Blotting, Western</subject><subject>Cell Adhesion</subject><subject>Cytokines - metabolism</subject><subject>Endothelial cells</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene expression</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>In Situ Nick-End Labeling</subject><subject>Leukocytes - metabolism</subject><subject>multidisciplinary</subject><subject>Nanopores - ultrastructure</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrates</subject><subject>Tissue engineering</subject><subject>Umbilical vein</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UU1LHTEUDVJRefoHXEig69F8TGaSTaFIWwWhILoOSebOxzMveU1mCu_fm_rU2k3vXdyEc-65Bw5C55RcUsLlVa6pULIiVFU1Fy2vyAE6YaQWFeOMffrwPkZnOa9JKcFUTdUROuaUyIax9gS5exgWb-YpDDhB3saQAZvQYQ_LU3S7ufy6EfIUA449HpeNCRhCF-cR_GQ8duA9tjs8JNNNEGYcTIhj9IDzYvOczAyn6LA3PsPZ61yhx-_fHq5vqrufP26vv95VTlA6V2C4bZteUk4lEcT2VrZWUqUkLQi1NZWNaKTpnVKNkuBKC26Ja1XvZGP5Cn3Z624Xu4HOFTfJeL1N08aknY5m0v8iYRr1EH_rRtCaEVUEPr8KpPhrgTzrdVxSKJ41Y6zmpV9YbM9yKeacoH-_QIn-k43eZ6NLNvolG03K0sVHb-8rb0kUAt8TcoHCAOnv7f_IPgMzX5xb</recordid><startdate>20190513</startdate><enddate>20190513</enddate><creator>Huang, Li-Hua</creator><creator>Cui, Long-Hui</creator><creator>Kim, Dae Hwan</creator><creator>Joo, Hyung Joon</creator><creator>Seo, Ha-Rim</creator><creator>Choi, Seung-Cheol</creator><creator>Noh, Ji-Min</creator><creator>Lee, Kyu Back</creator><creator>Hong, Soon Jun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20190513</creationdate><title>Regulating response and leukocyte adhesion of human endothelial cell by gradient nanohole substrate</title><author>Huang, Li-Hua ; Cui, Long-Hui ; Kim, Dae Hwan ; Joo, Hyung Joon ; Seo, Ha-Rim ; Choi, Seung-Cheol ; Noh, Ji-Min ; Lee, Kyu Back ; Hong, Soon Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-ea3b76f81318050bfb87b819981a3b1b4186568afc99698ecece53b0c79fc86b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/2</topic><topic>13/21</topic><topic>14/1</topic><topic>14/19</topic><topic>38</topic><topic>38/77</topic><topic>631/61/350/1058</topic><topic>631/80/79/2066</topic><topic>Adhesion</topic><topic>Basement Membrane - metabolism</topic><topic>Blotting, Western</topic><topic>Cell Adhesion</topic><topic>Cytokines - metabolism</topic><topic>Endothelial cells</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene expression</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>In Situ Nick-End Labeling</topic><topic>Leukocytes - metabolism</topic><topic>multidisciplinary</topic><topic>Nanopores - ultrastructure</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrates</topic><topic>Tissue engineering</topic><topic>Umbilical vein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Li-Hua</creatorcontrib><creatorcontrib>Cui, Long-Hui</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><creatorcontrib>Joo, Hyung Joon</creatorcontrib><creatorcontrib>Seo, Ha-Rim</creatorcontrib><creatorcontrib>Choi, Seung-Cheol</creatorcontrib><creatorcontrib>Noh, Ji-Min</creatorcontrib><creatorcontrib>Lee, Kyu Back</creatorcontrib><creatorcontrib>Hong, Soon Jun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Li-Hua</au><au>Cui, Long-Hui</au><au>Kim, Dae Hwan</au><au>Joo, Hyung Joon</au><au>Seo, Ha-Rim</au><au>Choi, Seung-Cheol</au><au>Noh, Ji-Min</au><au>Lee, Kyu Back</au><au>Hong, Soon Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating response and leukocyte adhesion of human endothelial cell by gradient nanohole substrate</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-05-13</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>7272</spage><pages>7272-</pages><artnum>7272</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Understanding signals in the microenvironment that regulate endothelial cell behavior are important in tissue engineering. Although many studies have examined the cellular effects of nanotopography, no study has investigated the functional regulation of human endothelial cells grown on nano-sized gradient hole substrate. We examined the cellular response of human umbilical vein endothelial cells (HUVECs) by using a gradient nanohole substrate (GHS) with three different types of nanohole patterns (HP): which diameters were described in HP1, 120–200 nm; HP2, 200–280 nm; HP3, 280–360 nm. In results, HP2 GHS increased the attachment and proliferation of HUVECs. Also, gene expression of focal adhesion markers in HUVECs was significantly increased on HP2 GHS. In vitro tube formation assay showed the enhancement of tubular network formation of HUVECs after priming on GHS compared to Flat. Furthermore, leukocyte adhesion was also reduced in the HUVECs in a hole-diameter dependent manner. To summarize, optimal proliferations with reduced leukocyte adhesion of HUVECs were achieved by gradient nanohole substrate with 200–280 nm-sized holes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31086227</pmid><doi>10.1038/s41598-019-43573-0</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-05, Vol.9 (1), p.7272, Article 7272
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6514209
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/2
13/21
14/1
14/19
38
38/77
631/61/350/1058
631/80/79/2066
Adhesion
Basement Membrane - metabolism
Blotting, Western
Cell Adhesion
Cytokines - metabolism
Endothelial cells
Fluorescent Antibody Technique
Gene expression
Human Umbilical Vein Endothelial Cells - metabolism
Humanities and Social Sciences
Humans
In Situ Nick-End Labeling
Leukocytes - metabolism
multidisciplinary
Nanopores - ultrastructure
Reverse Transcriptase Polymerase Chain Reaction
Science
Science (multidisciplinary)
Substrates
Tissue engineering
Umbilical vein
title Regulating response and leukocyte adhesion of human endothelial cell by gradient nanohole substrate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-17T01%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20response%20and%20leukocyte%20adhesion%20of%20human%20endothelial%20cell%20by%20gradient%20nanohole%20substrate&rft.jtitle=Scientific%20reports&rft.au=Huang,%20Li-Hua&rft.date=2019-05-13&rft.volume=9&rft.issue=1&rft.spage=7272&rft.pages=7272-&rft.artnum=7272&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-43573-0&rft_dat=%3Cproquest_pubme%3E2224343409%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-ea3b76f81318050bfb87b819981a3b1b4186568afc99698ecece53b0c79fc86b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2224343409&rft_id=info:pmid/31086227&rfr_iscdi=true