Loading…

p53 β-hydroxybutyrylation attenuates p53 activity

p53 is an essential tumor suppressor, whose activity is finely tuned by the posttranslational modifications. Previous research has reported that β-hydroxybutyrate (BHB) induces β-hydroxybutyrylation (Kbhb), which is a novel histone posttranslational modification. Here we report that p53 is modified...

Full description

Saved in:
Bibliographic Details
Published in:Cell death & disease 2019-03, Vol.10 (3), p.243, Article 243
Main Authors: Liu, Kun, Li, Fangzhou, Sun, Qianqian, Lin, Ning, Han, Haichao, You, Kaiqiang, Tian, Feng, Mao, Zebin, Li, Tingting, Tong, Tanjun, Geng, Meiyu, Zhao, Yingming, Gu, Wei, Zhao, Wenhui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:p53 is an essential tumor suppressor, whose activity is finely tuned by the posttranslational modifications. Previous research has reported that β-hydroxybutyrate (BHB) induces β-hydroxybutyrylation (Kbhb), which is a novel histone posttranslational modification. Here we report that p53 is modified by kbhb and that this modification occurs at lysines 120, 319, and 370 of p53. We demonstrate that the level of p53 kbhb is dramatically increased in cultured cells treated with BHB and in thymus tissues of fasted mice, and that CBP catalyze p53 kbhb. We show that p53 kbhb results in lower levels of p53 acetylation and reduced expression of the p53 downstream genes p21 and PUMA, as well as reduced cell growth arrest and apoptosis in cultured cells under p53-activating conditions. Similar results were observed in mouse thymus tissue under starvation conditions, which result in increased concentrations of serum BHB, and in response to genotoxic stress caused by γ-irradiation to activate p53. Our findings thus show that BHB-mediated p53 kbhb is a novel mechanism of p53 activity regulation, which may explain the link between ketone bodies and tumor, and which may provide promising therapeutic target for cancer treatment.
ISSN:2041-4889
2041-4889
DOI:10.1038/s41419-019-1463-y