Loading…

Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence

Nicotinamide adenine dinucleotide (NAD), the cell’s hydrogen carrier for redox enzymes, is well known for its role in redox reactions. More recently, it has emerged as a signaling molecule. By modulating NAD+-sensing enzymes, NAD+ controls hundreds of key processes from energy metabolism to cell sur...

Full description

Saved in:
Bibliographic Details
Published in:Cell metabolism 2018-03, Vol.27 (3), p.529-547
Main Authors: Rajman, Luis, Chwalek, Karolina, Sinclair, David A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nicotinamide adenine dinucleotide (NAD), the cell’s hydrogen carrier for redox enzymes, is well known for its role in redox reactions. More recently, it has emerged as a signaling molecule. By modulating NAD+-sensing enzymes, NAD+ controls hundreds of key processes from energy metabolism to cell survival, rising and falling depending on food intake, exercise, and the time of day. NAD+ levels steadily decline with age, resulting in altered metabolism and increased disease susceptibility. Restoration of NAD+ levels in old or diseased animals can promote health and extend lifespan, prompting a search for safe and efficacious NAD-boosting molecules that hold the promise of increasing the body’s resilience, not just to one disease, but to many, thereby extending healthy human lifespan. Nicotinamide adenine dinucleotide (NAD+) has emerged as a key regulator of cellular processes that control the body’s response to stress. Rajman et al. discuss NAD boosters, small molecules that raise NAD+ levels, which are now considered to be highly promising for the treatment of multiple diseases and the potential extension of human lifespan.
ISSN:1550-4131
1932-7420
DOI:10.1016/j.cmet.2018.02.011