Loading…

Miocene biome turnover drove conservative body size evolution across Australian vertebrates

On deep time scales, changing climatic trends can have a predictable influence on macroevolution. From evidence of mass extinctions, we know that rapid climatic oscillations can indirectly open niche space and precipitate adaptive radiation, changing the course of ecological diversification. These d...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2018-10, Vol.285 (1889), p.20181474
Main Authors: Brennan, Ian G, Keogh, J Scott
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:On deep time scales, changing climatic trends can have a predictable influence on macroevolution. From evidence of mass extinctions, we know that rapid climatic oscillations can indirectly open niche space and precipitate adaptive radiation, changing the course of ecological diversification. These dramatic shifts in the global climate, however, are rare events relative to extended periods of protracted climate change and biome turnover. It remains unclear whether during gradually changing periods, shifting habitats may instead promote non-adaptive speciation by facilitating allopatry and phenotypic conservatism. Using fossil-calibrated, species-level phylogenies for five Australian radiations comprising more than 800 species, we investigated temporal trends in biogeography and body size evolution. Here, we demonstrate that gradual Miocene cooling and aridification correlates with the restricted phenotypic diversification of multiple ecologically diverse vertebrate groups. This probably occurred as species ranges became fractured and isolated during continental biome restructuring, encouraging a shift towards conservatism in body size evolution. Our results provide further evidence that abiotic changes, not only biotic interactions, may act as selective forces influencing phenotypic macroevolution.
ISSN:0962-8452
1471-2954
DOI:10.1098/rspb.2018.1474