Loading…

Visualisation of Multiple Tight Junctional Complexes in Human Airway Epithelial Cells

Apically located tight junctions in airway epithelium perform a fundamental role in controlling macromolecule migration through paracellular spaces. Alterations in their expression may lead to disruptions in barrier integrity, which subsequently facilitates entry of potential bacterial and other pat...

Full description

Saved in:
Bibliographic Details
Published in:Biological procedures online 2018-02, Vol.20 (1), p.3-3, Article 3
Main Authors: Buckley, Alysia G, Looi, Kevin, Iosifidis, Thomas, Ling, Kak-Ming, Sutanto, Erika N, Martinovich, Kelly M, Kicic-Starcevich, Elizabeth, Garratt, Luke W, Shaw, Nicole C, Lannigan, Francis J, Larcombe, Alexander N, Zosky, Graeme, Knight, Darryl A, Rigby, Paul J, Kicic, Anthony, Stick, Stephen M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Apically located tight junctions in airway epithelium perform a fundamental role in controlling macromolecule migration through paracellular spaces. Alterations in their expression may lead to disruptions in barrier integrity, which subsequently facilitates entry of potential bacterial and other pathogens into the host. Furthermore, there is emerging evidence that the barrier integrity of the airway in certain airway inflammatory diseases may be altered. However, there is little consensus on the way this is assessed and measured and the type of cells used to achieve this. Here, we assessed four fixation methods including; (i) 4% ( /v) paraformaldehyde; (ii) 100% methanol; (iii) acetone or; (iv) 1:1 methanol: acetone. Pre-extraction with Triton X-100 was also performed and assessed on cells prior to fixation with either methanol or paraformaldehyde. Cells were also permeabilized with 0.1% (v/v) Saponin in 1Ă— TBS following fixation and subsequently stained for tight junction proteins. Confocal microscopy was then used to visualise, compare and evaluate staining intensity of the tight junctional complexes in order to determine a standardised workflow of reproducible staining. Positive staining was observed following methanol fixation for claudin-1 and ZO-1 tight junction proteins but no staining was detected for occludin in 16HBE14o- cells. Combinatorial fixation with methanol and acetone also produced consistent positive staining for both occludin and ZO-1 tight junction proteins in these cells. When assessed using primary cells cultured at air-liquid interface, similar positive staining for claudin-1 and ZO-1 was observed following methanol fixation, while similar positive staining for occludin and ZO-1 was observed following the same combinatorial fixation with methanol and acetone. The present study demonstrates the importance of a personalised approach to optimise staining for the visualisation of different tight junction proteins. Of significance, the workflow, once optimised, can readily be translated into primary airway epithelial cell air-liquid interface cultures where it can be used to assess barrier integrity in chronic lung diseases.
ISSN:1480-9222
1480-9222
DOI:10.1186/s12575-018-0070-0