Loading…

Inhibition of Pol I transcription treats murine and human AML by targeting the leukemia-initiating cell population

Despite the development of novel drugs, the prospects for many patients with acute myeloid leukemia (AML) remain dismal. This study reveals that the selective inhibitor of RNA polymerase I (Pol I) transcription, CX-5461, effectively treats aggressive AML, including mixed-lineage leukemia-driven AML,...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2017-05, Vol.129 (21), p.2882-2895
Main Authors: Hein, Nadine, Cameron, Donald P., Hannan, Katherine M., Nguyen, Nhu-Y N., Fong, Chun Yew, Sornkom, Jirawas, Wall, Meaghan, Pavy, Megan, Cullinane, Carleen, Diesch, Jeannine, Devlin, Jennifer R., George, Amee J., Sanij, Elaine, Quin, Jaclyn, Poortinga, Gretchen, Verbrugge, Inge, Baker, Adele, Drygin, Denis, Harrison, Simon J., Rozario, James D., Powell, Jason A., Pitson, Stuart M., Zuber, Johannes, Johnstone, Ricky W., Dawson, Mark A., Guthridge, Mark A., Wei, Andrew, McArthur, Grant A., Pearson, Richard B., Hannan, Ross D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the development of novel drugs, the prospects for many patients with acute myeloid leukemia (AML) remain dismal. This study reveals that the selective inhibitor of RNA polymerase I (Pol I) transcription, CX-5461, effectively treats aggressive AML, including mixed-lineage leukemia-driven AML, and outperforms standard chemotherapies. In addition to the previously characterized mechanism of action of CX-5461 (ie, the induction of p53-dependent apoptotic cell death), the inhibition of Pol I transcription also demonstrates potent efficacy in p53null AML in vivo. This significant survival advantage in both p53WT and p53null leukemic mice treated with CX-5461 is associated with activation of the checkpoint kinases 1/2, an aberrant G2/M cell-cycle progression and induction of myeloid differentiation of the leukemic blasts. The ability to target the leukemic-initiating cell population is thought to be essential for lasting therapeutic benefit. Most strikingly, the acute inhibition of Pol I transcription reduces both the leukemic granulocyte-macrophage progenitor and leukemia-initiating cell (LIC) populations, and suppresses their clonogenic capacity. This suggests that dysregulated Pol I transcription is essential for the maintenance of their leukemia-initiating potential. Together, these findings demonstrate the therapeutic utility of this new class of inhibitors to treat highly aggressive AML by targeting LICs. •Inhibition of RNA Pol I by CX-5461 treats aggressive AML and outperforms standard chemotherapy regimens.•CX-5461 induces p53-dependent apoptosis, p53-independent cell-cycle defects and differentiation, and reduces LICs.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2016-05-718171