Loading…

Porous Ionic Membrane Based Flexible Humidity Sensor and its Multifunctional Applications

A highly flexible porous ionic membrane (PIM) is fabricated from a polyvinyl alcohol/KOH polymer gel electrolyte, showing well‐defined 3D porous structure. The conductance of the PIM changes more than 70 times as the relative humidity (RH) increases from 10.89% to 81.75% with fast and reversible res...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2017-05, Vol.4 (5), p.1600404-n/a
Main Authors: Li, Tie, Li, Lianhui, Sun, Hongwei, Xu, Yan, Wang, Xuewen, Luo, Hui, Liu, Zheng, Zhang, Ting
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A highly flexible porous ionic membrane (PIM) is fabricated from a polyvinyl alcohol/KOH polymer gel electrolyte, showing well‐defined 3D porous structure. The conductance of the PIM changes more than 70 times as the relative humidity (RH) increases from 10.89% to 81.75% with fast and reversible response at room temperature. In addition, the PIM‐based sensor is insensitive to temperature (0–95 °C) and pressure (0–6.8 kPa) change, which indicates that it can be used as highly selective flexible humidity sensor. A noncontact switch system containing PIM‐based sensor is assembled, and results show that the switch responds favorably to RH change caused by an approaching finger. Moreover, an attachable smart label using PIM‐based sensor is explored to measure the water contents of human skin, which shows a great linear relationship between the sensitivity of the sensor and the facial water contents measured by a commercial reference device. A novel temperature and pressure insensitive flexible humidity sensor is fabricated from the porous ionic membrane (PIM), showing fast and reversible response to relative humidity increases from 10.89% to 81.75%. A noncontact switch system responded to finger approaching and the possibility of measuring the water content of human skin are demonstrated in detail on the basis of this PIM sensor.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.201600404