Loading…
Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation
Carbon monoxide (CO) derived from heme oxygenase has recently been shown to play a role in controlling hepatobiliary function, but intrahepatic distribution of the enzyme is unknown. We examined distribution of two kinds of the heme oxygenase isoforms (HO-1 and HO-2) in rat liver immunohistochemical...
Saved in:
Published in: | The Journal of clinical investigation 1998-02, Vol.101 (3), p.604-612 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon monoxide (CO) derived from heme oxygenase has recently been shown to play a role in controlling hepatobiliary function, but intrahepatic distribution of the enzyme is unknown. We examined distribution of two kinds of the heme oxygenase isoforms (HO-1 and HO-2) in rat liver immunohistochemically using monoclonal antibodies. The results showed that distribution of the two isoforms had distinct topographic patterns: HO-1, an inducible isoform, was observed only in Kupffer cells, while HO-2, a constitutive form, distributed to parenchymal cells, but not to Kupffer cells. Both isoforms were undetectable in hepatic stellate cells and sinusoidal endothelial cells. Of the two isoforms, HO-2 in the parenchymal cell rather than HO-1 in the Kupffer cell, appears to play a major role in regulation of microvascular tone. In the perfused liver, administration of HbO2, a CO-trapping reagent that can diffuse across the fenestrated endothelium into the space of Disse, elicited a marked sinusoidal constriction, while administration of a liposome-encapsulated Hb that cannot enter the space had no effect on the microvascular tone. These results suggest that CO evolved by HO-2 in the parenchymal cells, and, released to the extrasinusoidal space, served as the physiological relaxant for hepatic sinusoids. |
---|---|
ISSN: | 0021-9738 |
DOI: | 10.1172/jci1324 |