Loading…

Development of Culture Medium for the Isolation of Flavobacterium and Chryseobacterium from Rhizosphere Soil

An effective medium designated phosphate separately autoclaved Reasoner’s 2A supplemented with cycloheximide and tobramycin (PSR2A-C/T) has been developed for the isolation of Flavobacterium and Chryseobacterium strains from the plant rhizosphere. It consists of Reasoner’s 2A agar (R2A) prepared by...

Full description

Saved in:
Bibliographic Details
Published in:Microbes and Environments 2016, Vol.31(2), pp.104-110
Main Authors: Nishioka, Tomoki, Elsharkawy, Mohsen Mohamed, Suga, Haruhisa, Kageyama, Koji, Hyakumachi, Mitsuro, Shimizu, Masafumi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An effective medium designated phosphate separately autoclaved Reasoner’s 2A supplemented with cycloheximide and tobramycin (PSR2A-C/T) has been developed for the isolation of Flavobacterium and Chryseobacterium strains from the plant rhizosphere. It consists of Reasoner’s 2A agar (R2A) prepared by autoclaving phosphate and agar separately and supplementing with 50 mg L−1 cycloheximide and 1 mg L−1 tobramycin. A comparison was made among the following nine media: PSR2A-C/T, PSR2A-C/T supplemented with NaCl, R2A agar, R2A agar supplemented with cycloheximide and tobramycin, 1/4-strength tryptic soy agar (TSA), 1/10-strength TSA, soil-extract agar, Schaedler anaerobe agar (SAA), and SAA supplemented with gramicidin, for the recovery of Flavobacterium and Chryseobacterium strains from the Welsh onion rhizosphere. Flavobacterium strains were only isolated on PSR2A-C/T, and the recovery rate of Chryseobacterium strains was higher from PSR2A-C/T than from the eight other media. In order to confirm the effectiveness of PSR2A-C/T, bacteria were isolated from onion rhizosphere soil with this medium. Flavobacterium and Chryseobacterium strains were successfully isolated from this sample at a similar rate to that from the Welsh onion rhizosphere.
ISSN:1342-6311
1347-4405
DOI:10.1264/jsme2.ME15144