Loading…

Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set

Plant membrane compartments and trafficking pathways are highly complex, and are often distinct from those of animals and fungi. Progress has been made in defining trafficking in plants using transient expression systems. However, many processes require a precise understanding of plant membrane traf...

Full description

Saved in:
Bibliographic Details
Published in:The Plant journal : for cell and molecular biology 2009-07, Vol.59 (1), p.169-178
Main Authors: Geldner, Niko, Dénervaud-Tendon, Valérie, Hyman, Derek L, Mayer, Ulrike, Stierhof, York-Dieter, Chory, Joanne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant membrane compartments and trafficking pathways are highly complex, and are often distinct from those of animals and fungi. Progress has been made in defining trafficking in plants using transient expression systems. However, many processes require a precise understanding of plant membrane trafficking in a developmental context, and in diverse, specialized cell types. These include defense responses to pathogens, regulation of transporter accumulation in plant nutrition or polar auxin transport in development. In all of these cases a central role is played by the endosomal membrane system, which, however, is the most divergent and ill-defined aspect of plant cell compartmentation. We have designed a new vector series, and have generated a large number of stably transformed plants expressing membrane protein fusions to spectrally distinct, fluorescent tags. We selected lines with distinct subcellular localization patterns, and stable, non-toxic expression. We demonstrate the power of this multicolor 'Wave' marker set for rapid, combinatorial analysis of plant cell membrane compartments, both in live-imaging and immunoelectron microscopy. Among other findings, our systematic co-localization analysis revealed that a class of plant Rab1-homologs has a much more extended localization than was previously assumed, and also localizes to trans-Golgi/endosomal compartments. Constructs that can be transformed into any genetic background or species, as well as seeds from transgenic Arabidopsis plants, will be freely available, and will promote rapid progress in diverse areas of plant cell biology.
ISSN:0960-7412
1365-313X
DOI:10.1111/j.1365-313X.2009.03851.x