Loading…

Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction

Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al(3+) plays a key role in stabilizing the...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-12, Vol.5 (1), p.18053-18053, Article 18053
Main Authors: Shin, Dong Ok, Oh, Kyungbae, Kim, Kwang Man, Park, Kyu-Young, Lee, Byungju, Lee, Young-Gi, Kang, Kisuk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al(3+) plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the three dimensionally connected Li ion movement when heavily doped according to the structural refinement and the DFT calculations. In this report, we demonstrate that the multi-doping using additional Ta dopants into the Al-doped LLZO shifts the most energetically favorable sites of Al in the crystal structure from 24d to 96 h Li site, thereby providing more open space for Li ion transport. As a result of these synergistic effects, the multi-doped LLZO shows about three times higher ionic conductivity of 6.14 × 10(-4) S cm(-1) than that of the singly-doped LLZO with a much less efforts in stabilizing cubic phases in the synthetic condition.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep18053