Loading…

Measuring personal heat exposure in an urban and rural environment

Previous studies have linked heat waves to adverse health outcomes using ambient temperature as a proxy for estimating exposure. The goal of the present study was to test a method for determining personal heat exposure. An occupationally exposed group (urban groundskeepers in Birmingham, AL, USA N=2...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research 2015-02, Vol.137, p.410-418
Main Authors: Bernhard, Molly C., Kent, Shia T., Sloan, Meagan E., Evans, Mary B., McClure, Leslie A., Gohlke, Julia M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous studies have linked heat waves to adverse health outcomes using ambient temperature as a proxy for estimating exposure. The goal of the present study was to test a method for determining personal heat exposure. An occupationally exposed group (urban groundskeepers in Birmingham, AL, USA N=21), as well as urban and rural community members from Birmingham, AL (N=30) or west central AL (N=30) wore data logging temperature and light monitors clipped to the shoe for 7 days during the summer of 2012. We found that a temperature monitor clipped to the shoe provided a comfortable and feasible method for recording personal heat exposure. Ambient temperature (°C) recorded at the nearest weather station was significantly associated with personal heat exposure [β 0.37, 95%CI (0.35, 0.39)], particularly in groundskeepers who spent more of their total time outdoors [β 0.42, 95%CI (0.39, 0.46)]. Factors significantly associated with lower personal heat exposure include reported time indoors [β −2.02, 95%CI (−2.15, −1.89)], reported income>20K [β −1.05, 95%CI (−1.79, −0.30)], and measured % body fat [β −0.07, 95%CI (−0.12, −0.02)]. There were significant associations between income and % body fat with lower indoor and nighttime exposures, but not with outdoor heat exposure, suggesting modifications of the home thermal environment play an important role in determining overall heat exposure. Further delineation of the effect of personal characteristics on heat exposure may help to develop targeted strategies for preventing heat-related illness. •Delineates the extent and implications of indoor and outdoor thermal environments.•Examines thermal exposures in rural, urban and occupational populations.•Compares personal exposure to weather station datasets.•Demonstrates feasibility of individual level heat exposure measurement.•Advances the broader field of thermal environment and health.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2014.11.002