Loading…

Highly mesoporous metal-organic framework assembled in a switchable solvent

The mesoporous metal-organic frameworks are a family of materials that have pore sizes ranging from 2 to 50 nm, which have shown promising applications in catalysis, adsorption, chemical sensing and so on. The preparation of mesoporous metal-organic frameworks usually needs the supramolecular or coo...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2014-07, Vol.5 (1), p.4465-4465, Article 4465
Main Authors: Peng, Li, Zhang, Jianling, Xue, Zhimin, Han, Buxing, Sang, Xinxin, Liu, Chengcheng, Yang, Guanying
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mesoporous metal-organic frameworks are a family of materials that have pore sizes ranging from 2 to 50 nm, which have shown promising applications in catalysis, adsorption, chemical sensing and so on. The preparation of mesoporous metal-organic frameworks usually needs the supramolecular or cooperative template strategy. Here we report the template-free assembly of mesoporous metal-organic frameworks by using CO2-expanded liquids as switchable solvents. The mesocellular metal-organic frameworks with large mesopores (13-23 nm) are formed, and their porosity properties can be easily adjusted by controlling CO2 pressure. Moreover, the use of CO2 can accelerate the reaction for metal-organic framework formation from metal salt and organic linker due to the viscosity-lowering effect of CO2, and the product can be recovered through CO2 extraction. The as-synthesized mesocellular metal-organic frameworks are highly active in catalysing the aerobic oxidation of benzylic alcohols under mild temperature at atmospheric pressure.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms5465