Loading…
‘Multicopy Multivalent’ Glycopolymer-Stabilized Gold Nanoparticles as Potential Synthetic Cancer Vaccines
Mucin-related carbohydrates are overexpressed on the surface of cancer cells, providing a disease-specific target for cancer immunotherapy. Here, we describe the design and construction of peptide-free multivalent glycosylated nanoscale constructs as potential synthetic cancer vaccines that generate...
Saved in:
Published in: | Journal of the American Chemical Society 2013-06, Vol.135 (25), p.9362-9365 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mucin-related carbohydrates are overexpressed on the surface of cancer cells, providing a disease-specific target for cancer immunotherapy. Here, we describe the design and construction of peptide-free multivalent glycosylated nanoscale constructs as potential synthetic cancer vaccines that generate significant titers of antibodies selective for aberrant mucin glycans. A polymerizable version of the Tn-antigen glycan was prepared and converted into well-defined glycopolymers by Reversible Addition–Fragmentation chain Transfer (RAFT) polymerization. The polymers were then conjugated to gold nanoparticles, yielding ‘multicopy-multivalent’ nanoscale glycoconjugates. Immunological studies indicated that these nanomaterials generated strong and long-lasting production of antibodies that are selective to the Tn-antigen glycan and cross-reactive toward mucin proteins displaying Tn. The results demonstrate proof-of-concept of a simple and modular approach toward synthetic anticancer vaccines based on multivalent glycosylated nanomaterials without the need for a typical vaccine protein component. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja4046857 |