Loading…

High fat diet and body weight have different effects on cannabinoid CB1 receptor expression in rat nodose ganglia

Abstract Energy balance is regulated, in part, by the orexigenic signaling pathways of the vagus nerve. Fasting-induced modifications in the expression of orexigenic signaling systems have been observed in vagal afferents of lean animals. Altered basal cannabinoid (CB1 ) receptor expression in the n...

Full description

Saved in:
Bibliographic Details
Published in:Autonomic neuroscience 2013-12, Vol.179 (1), p.122-130
Main Authors: Cluny, N.L, Baraboi, E.D, Mackie, K, Burdyga, G, Richard, D, Dockray, G.J, Sharkey, K.A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Energy balance is regulated, in part, by the orexigenic signaling pathways of the vagus nerve. Fasting-induced modifications in the expression of orexigenic signaling systems have been observed in vagal afferents of lean animals. Altered basal cannabinoid (CB1 ) receptor expression in the nodose ganglia in obesity has been reported. Whether altered body weight or a high fat diet modifies independent or additive changes in CB1 expression is unknown. We investigated the expression of CB1 and orexin 1 receptor (OX-1R) in the nodose ganglia of rats fed ad libitum or food deprived (24 h), maintained on low or high fat diets (HFD), with differing body weights. Male Wistar rats were fed chow or HFD (diet-induced obese: DIO or diet-resistant: DR) or were body weight matched to the DR group but fed chow (wmDR). CB1 and OX-1R immunoreactivity were investigated and CB1 mRNA density was determined using in situ hybridization. CB1 immunoreactivity was measured in fasted rats after sulfated cholecystokinin octapeptide (CCK8s) administration. In chow rats, fasting did not modify the level of CB1 mRNA. More CB1 immunoreactive cells were measured in fed DIO, DR and wmDR rats than chow rats; levels increased after fasting in chow and wmDR rats but not in DIO or DR rats. In HFD fasted rats CCK8s did not reduce CB1 immunoreactivity. OX-1R immunoreactivity was modified by fasting only in DR rats. These data suggest that body weight contributes to the proportion of neurons expressing CB1 immunoreactivity in the nodose ganglion, while HFD blunts fasting-induced increases, and CCK-induced suppression of, CB1 -immunoreactivity.
ISSN:1566-0702
1872-7484
DOI:10.1016/j.autneu.2013.09.015