Loading…

Epigenetic Regulation of miR-17∼92 Contributes to the Pathogenesis of Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung fibrosis with a high mortality rate. In organ repair and remodeling, epigenetic events are important. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and can target epigenetic molecules important in DNA methylati...

Full description

Saved in:
Bibliographic Details
Published in:American journal of respiratory and critical care medicine 2013-02, Vol.187 (4), p.397-405
Main Authors: DAKHLALLAH, Duaa, BATTE, Kara, PIPER, Melissa G, MARSH, Clay B, YIJIE WANG, CANTEMIR-STONE, Carmen Z, YAN, Pearlly, NUOVO, Gerard, MIKHAIL, Adel, HITCHCOCK, Charles L, WRIGHT, Valerie P, PATRICK NANA-SINKAM, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung fibrosis with a high mortality rate. In organ repair and remodeling, epigenetic events are important. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and can target epigenetic molecules important in DNA methylation. The miR-17~92 miRNA cluster is critical for lung development and lung epithelial cell homeostasis and is predicted to target fibrotic genes and DNA methyltransferase (DNMT)-1 expression. We investigated the miR-17~92 cluster expression and its role in regulating DNA methylation events in IPF lung tissue. Expression and DNA methylation patterns of miR-17~92 were determined in human IPF lung tissue and fibroblasts and fibrotic mouse lung tissue. The relationship between the miR-17~92 cluster and DNMT-1 expression was examined in vitro. Using a murine model of pulmonary fibrosis, we examined the therapeutic potential of the demethylating agent, 5'-aza-2'-deoxycytidine. Compared with control samples, miR-17~92 expression was reduced in lung biopsies and lung fibroblasts from patients with IPF, whereas DNMT-1 expression and methylation of the miR-17~92 promoter was increased. Several miRNAs from the miR-17~92 cluster targeted DNMT-1 expression resulting in a negative feedback loop. Similarly, miR-17~92 expression was reduced in the lungs of bleomycin-treated mice. Treatment with 5'-aza-2'-deoxycytidine in a murine bleomycin-induced pulmonary fibrosis model reduced fibrotic gene and DNMT-1 expression, enhanced miR-17~92 cluster expression, and attenuated pulmonary fibrosis. This study provides insight into the pathobiology of IPF and identifies a novel epigenetic feedback loop between miR-17~92 and DNMT-1 in lung fibrosis.
ISSN:1073-449X
1535-4970
DOI:10.1164/rccm.201205-0888oc